Suppr超能文献

提高质子陶瓷电化学电池三导电电极的表面活性和耐久性。

Enhancing surface activity and durability in triple conducting electrode for protonic ceramic electrochemical cells.

作者信息

Zheng Shuanglin, Wu Wei, Zhang Yuchen, Zhao Zeyu, Duan Chuancheng, Karki Saroj, Ding Hanping

机构信息

School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, 73019, USA.

Energy and Environment Science & Technology, Idaho National Laboratory, Idaho Falls, ID, 83415, USA.

出版信息

Nat Commun. 2025 May 4;16(1):4146. doi: 10.1038/s41467-025-59477-9.

Abstract

With the material system operating at lower temperatures, protonic ceramic electrochemical cells (PCECs) can offer high energy efficiency and reliable performance for both power generation and hydrogen production, making them a promising technology for reversible energy cycling. However, PCEC faces technical challenges, particularly regarding electrode activity and durability under high current density operations. To address these challenges, we introduce a nano-architecture oxygen electrode characterized by high porosity and triple conductivity, designed to enhance catalytic activity and interfacial stability through a self-assembly approach, while maintaining scalability. Electrochemical cells incorporating this advanced electrode demonstrate robust performance, achieving a peak power density of 1.50 W cm⁻ at 600 °C in fuel cell mode and a current density of 5.04 A cm at 1.60 V in electrolysis mode, with enhanced stability on transient operations and thermal cycles. The underlying mechanisms are closely related to the improved surface activity and mass transfer due to the dual features of the electrode structure. Additionally, the enhanced interfacial bonding between the oxygen electrode and electrolyte contributes to increased durability and thermomechanical integrity. This study underscores the critical importance of optimizing electrode microstructure to achieve a balance between surface activity and durability.

摘要

随着材料系统在较低温度下运行,质子陶瓷电化学电池(PCEC)可为发电和制氢提供高能效和可靠性能,使其成为可逆能量循环的一项有前景的技术。然而,PCEC面临技术挑战,特别是在高电流密度运行下的电极活性和耐久性方面。为应对这些挑战,我们引入了一种具有高孔隙率和三重导电性的纳米结构氧电极,其设计通过自组装方法提高催化活性和界面稳定性,同时保持可扩展性。包含这种先进电极的电化学电池表现出强大的性能,在燃料电池模式下于600°C时实现了1.50 W cm⁻²的峰值功率密度,在电解模式下于1.60 V时实现了5.04 A cm⁻²的电流密度,在瞬态运行和热循环中具有增强的稳定性。其潜在机制与由于电极结构的双重特性而改善的表面活性和传质密切相关。此外,氧电极与电解质之间增强的界面结合有助于提高耐久性和热机械完整性。这项研究强调了优化电极微观结构以实现表面活性和耐久性之间平衡的至关重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c64a/12049472/741d8de5282f/41467_2025_59477_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验