遗传特征选择算法作为一种高效的胶质瘤分级分类器。

Genetic feature selection algorithm as an efficient glioma grade classifier.

作者信息

Lin Ting-Han, Lin Hung-Yi

机构信息

China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan.

Department of Distribution Management, National Taichung University of Science and Technology, 129, Sanmin Rd., Sec. 3, Taichung, Taiwan (R.O.C.).

出版信息

Sci Rep. 2025 May 3;15(1):15497. doi: 10.1038/s41598-024-83879-2.

Abstract

Gliomas are among the most lethal and debilitating cancers. Genetic testing is a rapidly evolving modality for cancer management. The advent of DNA microarrays enabled the utility of computational analyses in such management on a molecular basis. However, as current computational analyses remain insensitive to interactions between molecular features, they rarely postulate reasonable pathogenesis. The current study proposes a heuristic feature selection algorithm that identifies subsets of genes to almost perfectly classify glioma grades. The discretization technique in our method is a powerful tool against the tremendous data volume in DNA microarray. Instead of recognizing individual genetic features, the proposed algorithm helps identify specific gene subsets that play important roles in the pathogenesis of glioma.

摘要

神经胶质瘤是最致命且使人衰弱的癌症之一。基因检测是癌症管理中一种快速发展的手段。DNA微阵列的出现使得基于分子基础的计算分析在这种管理中得以应用。然而,由于当前的计算分析对分子特征之间的相互作用仍然不敏感,它们很少能提出合理的发病机制。当前的研究提出了一种启发式特征选择算法,该算法能够识别出几乎可以完美区分神经胶质瘤等级的基因子集。我们方法中的离散化技术是应对DNA微阵列中大量数据的有力工具。该算法不是识别单个基因特征,而是有助于识别在神经胶质瘤发病机制中起重要作用的特定基因子集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061a/12049469/4174ca1e4fcc/41598_2024_83879_Fig1_HTML.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索