Suppr超能文献

基于颜色和纹理特征的脑肿瘤组织病理学图像计算机辅助诊断系统。

Computer-aided diagnosis system for grading brain tumor using histopathology images based on color and texture features.

机构信息

Information Technology Department, Faculty of Computers and Information, Mansoura University, 35516, Mansoura, Egypt.

出版信息

BMC Med Imaging. 2024 Jul 19;24(1):177. doi: 10.1186/s12880-024-01355-9.

Abstract

BACKGROUND

Cancer pathology shows disease development and associated molecular features. It provides extensive phenotypic information that is cancer-predictive and has potential implications for planning treatment. Based on the exceptional performance of computational approaches in the field of digital pathogenic, the use of rich phenotypic information in digital pathology images has enabled us to identify low-level gliomas (LGG) from high-grade gliomas (HGG). Because the differences between the textures are so slight, utilizing just one feature or a small number of features produces poor categorization results.

METHODS

In this work, multiple feature extraction methods that can extract distinct features from the texture of histopathology image data are used to compare the classification outcomes. The successful feature extraction algorithms GLCM, LBP, multi-LBGLCM, GLRLM, color moment features, and RSHD have been chosen in this paper. LBP and GLCM algorithms are combined to create LBGLCM. The LBGLCM feature extraction approach is extended in this study to multiple scales using an image pyramid, which is defined by sampling the image both in space and scale. The preprocessing stage is first used to enhance the contrast of the images and remove noise and illumination effects. The feature extraction stage is then carried out to extract several important features (texture and color) from histopathology images. Third, the feature fusion and reduction step is put into practice to decrease the number of features that are processed, reducing the computation time of the suggested system. The classification stage is created at the end to categorize various brain cancer grades. We performed our analysis on the 821 whole-slide pathology images from glioma patients in the Cancer Genome Atlas (TCGA) dataset. Two types of brain cancer are included in the dataset: GBM and LGG (grades II and III). 506 GBM images and 315 LGG images are included in our analysis, guaranteeing representation of various tumor grades and histopathological features.

RESULTS

The fusion of textural and color characteristics was validated in the glioma patients using the 10-fold cross-validation technique with an accuracy equals to 95.8%, sensitivity equals to 96.4%, DSC equals to 96.7%, and specificity equals to 97.1%. The combination of the color and texture characteristics produced significantly better accuracy, which supported their synergistic significance in the predictive model. The result indicates that the textural characteristics can be an objective, accurate, and comprehensive glioma prediction when paired with conventional imagery.

CONCLUSION

The results outperform current approaches for identifying LGG from HGG and provide competitive performance in classifying four categories of glioma in the literature. The proposed model can help stratify patients in clinical studies, choose patients for targeted therapy, and customize specific treatment schedules.

摘要

背景

癌症病理学显示疾病的发展和相关的分子特征。它提供了广泛的表型信息,具有癌症预测性,并对治疗计划具有潜在影响。基于计算方法在数字病理学领域的卓越表现,数字病理学图像中的丰富表型信息使我们能够识别低级别胶质瘤(LGG)和高级别胶质瘤(HGG)。由于纹理之间的差异非常细微,仅使用一个特征或少数几个特征会导致分类结果不佳。

方法

在这项工作中,使用了多种特征提取方法,可以从组织病理学图像数据的纹理中提取不同的特征,以比较分类结果。本文选择了成功的特征提取算法 GLCM、LBP、多 LBGLCM、GLRLM、颜色矩特征和 RSHD。LBP 和 GLCM 算法结合形成 LBGLCM。在本研究中,LBGLCM 特征提取方法通过图像金字塔扩展到多个尺度,图像金字塔通过在空间和尺度上对图像进行采样来定义。预处理阶段首先用于增强图像的对比度,去除噪声和照明效果。然后进行特征提取阶段,从组织病理学图像中提取几个重要特征(纹理和颜色)。第三,进行特征融合和降维步骤,以减少处理的特征数量,从而减少所提出系统的计算时间。最后创建分类阶段,对各种脑癌进行分类。我们在癌症基因组图谱(TCGA)数据集的胶质瘤患者的 821 张全幻灯片病理图像上进行了分析。该数据集包含两种类型的脑癌:GBM 和 LGG(II 级和 III 级)。我们的分析包括 506 张 GBM 图像和 315 张 LGG 图像,保证了各种肿瘤分级和组织病理学特征的代表性。

结果

使用 10 折交叉验证技术在胶质瘤患者中验证了纹理和颜色特征的融合,准确率为 95.8%,灵敏度为 96.4%,DSC 为 96.7%,特异性为 97.1%。颜色和纹理特征的组合产生了显著更好的准确性,这支持了它们在预测模型中的协同意义。结果表明,纹理特征与传统影像学相结合,可以作为客观、准确和全面的胶质瘤预测指标。

结论

本研究结果优于目前用于识别 LGG 和 HGG 的方法,并在文献中对 4 类胶质瘤的分类中具有竞争力的性能。所提出的模型可以帮助对临床研究中的患者进行分层,选择接受靶向治疗的患者,并为患者制定特定的治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae1f/11264763/1ef36a1ce305/12880_2024_1355_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验