Suppr超能文献

使用离散数学方法对常染色体隐性多囊肾病中的基因表达进行拓扑分析和单样本基因集富集分析的初步研究。

Pilot study using a discrete mathematical approach for topological analysis and ssGSEA of gene expression in autosomal recessive polycystic kidney disease.

作者信息

Okui Nobuo, Hachiya Tsuyoshi, Horie Shigeo

机构信息

Urology, Yokosuka Urogynecology and Urology Clinic, Ootaki 2-6, Yokosuka, Kanagawa, 238-0008, Japan.

Mathematics, Kanagawa Dental University, Inaoka-cyou 82, Yokosuka, Kanagawa, 238- 0008, Japan.

出版信息

Sci Rep. 2025 May 3;15(1):15559. doi: 10.1038/s41598-025-99048-y.

Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is a severe genetic disorder characterized by renal cystogenesis and hepatic fibrosis, primarily associated with PKHD1 mutations. While differential expression analysis (DEG) has identified key genes involved in ARPKD, their network-level interactions remain unclear. Recent studies have implicated WNT signaling in ARPKD pathogenesis, but a topological framework may provide additional insights into gene community structures. This study applied a network-based approach integrating single-sample gene set enrichment analysis (ssGSEA) and topological centrality analysis to investigate gene communities in ARPKD. We identified three key communities: Community 2, centered on IFT22, exhibited stable activation in both ARPKD and healthy samples, suggesting its role in ciliary function. Community 5, predominantly activated in ARPKD, included genes linked to tissue repair and immune regulation. In contrast, Community 3 was suppressed in ARPKD, indicating potential structural instability. Notably, PKHD1 was mathematically isolated, suggesting limited direct involvement in ARPKD-specific transcriptional networks, while the absence of WNT5A, CDH1, and FZD10 from defined communities in ARPKD may indicate potential alterations in their network associations compared to healthy individuals. These findings highlight the advantages of network topology over conventional DEG analysis in elucidating ARPKD pathophysiology. By identifying gene communities and regulatory hubs, this approach offers novel insights into disease mechanisms and potential therapeutic targets.

摘要

常染色体隐性多囊肾病(ARPKD)是一种严重的遗传性疾病,其特征为肾囊肿形成和肝纤维化,主要与PKHD1突变相关。虽然差异表达分析(DEG)已确定了参与ARPKD的关键基因,但其网络水平的相互作用仍不清楚。最近的研究表明WNT信号传导与ARPKD发病机制有关,但拓扑框架可能会为基因群落结构提供更多见解。本研究应用基于网络的方法,整合单样本基因集富集分析(ssGSEA)和拓扑中心性分析,以研究ARPKD中的基因群落。我们确定了三个关键群落:以IFT22为中心的群落2在ARPKD和健康样本中均表现出稳定的激活,表明其在纤毛功能中的作用。主要在ARPKD中激活的群落5包括与组织修复和免疫调节相关的基因。相比之下,群落3在ARPKD中受到抑制,表明可能存在结构不稳定性。值得注意的是,PKHD1在数学上是孤立的,这表明它在ARPKD特异性转录网络中的直接参与有限,而在ARPKD的定义群落中缺乏WNT5A、CDH1和FZD10可能表明与健康个体相比,它们的网络关联存在潜在改变。这些发现突出了网络拓扑在阐明ARPKD病理生理学方面优于传统DEG分析的优势。通过识别基因群落和调控枢纽,这种方法为疾病机制和潜在治疗靶点提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0436/12049503/76677f536855/41598_2025_99048_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验