Akanda Shamimur R, Kupratis Meghan E, Bhattacharjee Arnab, Benson Jamie, Burris David L, Price Christopher
Mechanical Engineering, University of Delaware, Newark, DE, USA.
Biomedical Engineering Department, University of Delaware, 590 Avenue 1743, Newark, DE, USA.
Ann Biomed Eng. 2025 May 3. doi: 10.1007/s10439-025-03708-z.
Understanding how obesity-a key risk factor for osteoarthritis-effects articular cartilage function is critical to understand OA pathoetiology. Cartilage, a biphasic material, supports vanishingly low friction coefficients in vivo, but is tribomechanically compromised by load-induced interstitial pressure/lubrication loss. To maintain tribomechanical function, cartilage must recover fluid lost to habitual/average contact stresses, a problem obesity likely exacerbates. Recently, we have shown that articulation/sliding drives robust interstitial fluid recovery and indefinite maintenance of biofidelic tissue strains and frictions through generation of hydrodynamic pressures within cartilage contact interfaces, i.e., via 'tribological rehydration.' However, the impact of elevated contact stresses on tribological rehydration and cartilage's function/lubrication remains unknown.
Using our convergent stationary contact area (cSCA) testing approach on ovine stifle cartilage explants bathed in PBS, we aimed to elucidate several points: (1) the effect of elevated contact stress on tribological rehydration during high-speed articulation, and how (2) cartilage material properties and (3) sliding speed influence contact stress-dependent fluid exudation, rehydration, and lubrication.
Overall, we identified that (i) contact stress, across a narrow range, and (ii) static loading time are key controllers of tribological rehydration magnitude, compression accumulation, and equilibrium/total compression under biofidelic cSCA loading and sliding conditions. However, over the range tested (i.e., 0.2-0.8 MPa), (iii) contact stresses had no appreciable effect on cartilage's remarkable lubricity in the cSCA.
These results show that obesity is likely to directly physically impair articular cartilage function, and that obesity-driven tissue compression/strain, and not friction per se, may be the primary mechanical driver of cartilage dysfunction and OA risk.
了解肥胖(骨关节炎的关键风险因素)如何影响关节软骨功能对于理解骨关节炎的发病机制至关重要。软骨是一种双相材料,在体内支持极低的摩擦系数,但在摩擦力学上会因负荷诱导的间质压力/润滑丧失而受损。为维持摩擦力学功能,软骨必须恢复因习惯性/平均接触应力而流失的液体,而肥胖可能会加剧这一问题。最近,我们已经表明,关节活动/滑动通过在软骨接触界面内产生流体动力压力,即通过“摩擦学再水化”,驱动强大的间质液恢复以及生物保真组织应变和摩擦的无限期维持。然而,升高的接触应力对摩擦学再水化以及软骨功能/润滑的影响仍然未知。
我们采用收敛固定接触面积(cSCA)测试方法,对浸泡在磷酸盐缓冲盐水中的绵羊膝关节软骨外植体进行测试,旨在阐明以下几点:(1)高速关节活动期间升高的接触应力对摩擦学再水化的影响,以及(2)软骨材料特性和(3)滑动速度如何影响接触应力依赖性液体渗出、再水化和润滑。
总体而言,我们确定:(i)在狭窄范围内的接触应力以及(ii)静态加载时间是生物保真cSCA加载和滑动条件下摩擦学再水化幅度、压缩积累以及平衡/总压缩的关键控制因素。然而,在所测试的范围内(即0.2 - 0.8兆帕),(iii)接触应力对cSCA中软骨显著的润滑性没有明显影响。
这些结果表明,肥胖可能直接对关节软骨功能造成物理损害,而且肥胖导致的组织压缩/应变而非摩擦本身可能是软骨功能障碍和骨关节炎风险的主要机械驱动因素。