Rahmati-Abkenar Mahboubeh, Alizadeh Milad, Shahabi-Ghahfarokhi Sina, Jaeger Leonie, Josefsson Sarah, Ketzer Marcelo
Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden; Research and Development, Scania, Sweden.
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran; Research and Development, Dayan Electronics, Iran.
Sci Total Environ. 2025 Jun 10;980:179572. doi: 10.1016/j.scitotenv.2025.179572. Epub 2025 May 3.
The Baltic Sea, a brackish basin characterised by significant organic matter deposition, presents a crucial area for climate change research. This study examines the long-term evolution of methane geochemistry in sediments from four sites within the Gotland basins of the Baltic Sea, spanning the past 14,000 years since deglaciation. This timescale enables us to capture the full transition from lacustrine to marine conditions and link past organic matter accumulation with present-day methane dynamics. Using a transport-reaction model, we also explore future scenarios (2020-2100), aligned with climate projections, to assess how changes in bottom water temperature, organic matter loading, and freshwater input may influence methane production and emission from sediments. Our findings reveal that a 2 °C rise in bottom water temperature could increase free gas formation, though without directly impacting methane release into the sea. However, elevated organic matter loading significantly influences methane diffusion through the seafloor. Additionally, anticipated freshwater influx and subsequent reductions in sulphate concentrations will substantially enhance methane diffusion into seawater. The model projects that rising temperatures, eutrophication, and freshwater input will together drive increased methane emissions into the Baltic Sea, with potential consequences for climate change amplification.
波罗的海是一个半咸水盆地,其特点是有大量有机物质沉积,是气候变化研究的关键区域。本研究考察了波罗的海哥特兰盆地内四个地点沉积物中甲烷地球化学的长期演变,时间跨度为自冰川消退以来的过去14000年。这个时间尺度使我们能够捕捉从湖泊环境到海洋环境的完整转变,并将过去的有机物质积累与当前的甲烷动态联系起来。我们还使用一个传输 - 反应模型探索了与气候预测相符的未来情景(2020 - 2100年),以评估底层水温、有机物质负荷和淡水输入的变化如何影响沉积物中甲烷的产生和排放。我们的研究结果表明,底层水温上升2°C可能会增加游离气体的形成,尽管不会直接影响甲烷向海水中的释放。然而,有机物质负荷的增加会显著影响甲烷通过海底的扩散。此外,预计的淡水流入以及随后硫酸盐浓度的降低将大大增强甲烷向海水中的扩散。该模型预测,温度上升、富营养化和淡水输入共同作用将导致波罗的海甲烷排放量增加,可能对气候变化加剧产生影响。