Johansson Alexander, Sarrette Baptiste, Boscari Alexandre, Prudent Marion, Gruber Véronique, Brouquisse Renaud, Jacquet Christophe, Gough Clare, Pauly Nicolas
Laboratory of Plant-Microbe Interactions and Environment (LIPME), University of Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan Cedex, France.
Laboratoire de Recherche en Sciences Végétales (LRSV), University of Toulouse, CNRS, Toulouse-INP, 31320 Auzeville-Tolosane, France.
J Exp Bot. 2025 May 4. doi: 10.1093/jxb/eraf175.
Legumes are crops of considerable economic and ecological significance. They are suitable for cultivation in a variety of environments and temperatures. They are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia contributing to the enrichment of marginal soils with this essential nutrient, and reduces artificial fertilizer use. Similarly, legumes establish a widespread mutualistic association with soil fungi, involving a reciprocal transfer of nutrients. Global warming is reshaping plant interactions with its environment, exerting profound effects on global agricultural systems. Plants have evolved sensing, signaling, and adaptive molecular mechanisms to respond to (a)biotic stimuli. Reactive oxygen, nitrogen, and sulphur species (RONSS) are key players in stress tolerance mechanisms, and their homeostasis, mainly accomplished by antioxidant enzymes and metabolites, is essential to allow redox signaling while preventing oxidative damage. Here, we review recent findings, highlighting metabolic pathways of RONSS and antioxidants, with emphasis on their functions in signaling and protection in response to (a)biotic constraints in legumes. Special attention is paid to the molecular crosstalk between RONSS in response to multiple stimuli and notably how redox homeostasis adjustment can increase (a)biotic stress tolerance and potentially be exploited to mitigate the negative effects of climate change.
豆类是具有重要经济和生态意义的作物。它们适合在各种环境和温度下种植。它们能够与称为根瘤菌的固氮土壤细菌形成共生关系,有助于用这种必需养分富集边缘土壤,并减少人工肥料的使用。同样,豆类与土壤真菌建立了广泛的互利关系,涉及养分的相互转移。全球变暖正在重塑植物与其环境的相互作用,对全球农业系统产生深远影响。植物已经进化出感知、信号传导和适应性分子机制来应对生物(非生物)刺激。活性氧、氮和硫物质(RONSS)是胁迫耐受机制的关键参与者,它们的稳态主要由抗氧化酶和代谢物完成,对于允许氧化还原信号传导同时防止氧化损伤至关重要。在这里,我们综述了最近的研究结果,重点介绍了RONSS和抗氧化剂的代谢途径,强调了它们在豆类应对生物(非生物)胁迫时的信号传导和保护功能。特别关注了RONSS在应对多种刺激时的分子相互作用,尤其是氧化还原稳态调节如何提高生物(非生物)胁迫耐受性以及如何利用其减轻气候变化的负面影响。