Suppr超能文献

坏死梭杆菌跨膜蛋白免疫原性多表位疫苗的合理计算设计与开发

Rational computational design and development of an immunogenic multiepitope vaccine incorporating transmembrane proteins of Fusobacterium necrophorum.

作者信息

Naveed Muhammad, Toheed Muhammad, Aziz Tariq, Asim Muhammad, Qadir Parveen, Rehman Hafiz Muzzammel, Mohamed Rania Ali El Hadi, Al-Joufi Fakhria A, Alwethaynani Maher S, Fallatah Deema

机构信息

Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.

Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, Arta, Greece.

出版信息

Sci Rep. 2025 May 4;15(1):15587. doi: 10.1038/s41598-025-00166-4.

Abstract

Fusobacterium necrophorum is a Gram-negative, anaerobic pathogen responsible for Lemierre's syndrome, bovine foot rot, and other necrotizing infections. The rise in antimicrobial resistance and the absence of effective vaccines underscore the need for alternative therapeutic strategies. This study employs computational biology to design a multi-epitope vaccine targeting transmembrane proteins of F. necrophorum to elicit strong immune responses. The selected proteins were evaluated for toxicity, allergenicity, and antigenicity, followed by epitope prediction and screening. B and T cell epitopes were linked using immunogenic linkers, forming a vaccine construct with a VaxiJen score of 0.7293 and a solubility score of 8.30 in E. coli. Structural validation using TrRosetta and Ramachandran plots confirmed 97.4% of residues in favored regions, indicating high stability. Population coverage analysis indicated over 99% global applicability, further enhancing its potential impact. Docking studies revealed strong interactions with immune receptors TLR7 and TLR8. TLR7 formed 12 hydrogen bonds, while TLR8(A) formed 9, and TLR8(B) exhibited the highest interaction, forming 13 hydrogen bonds with the vaccine construct. Molecular dynamics simulations confirmed structural stability and receptor engagement. The RMSD stabilized around 4-5 Å, indicating structural stability of the Vaccine-TLR8(B) complex. The Radius of Gyration remained around 36 Å, showing slight compaction over time, while RMSF peaked at 8-9 Å in flexible regions, with lower fluctuations (1.5-2.5 Å) in stable core regions. Principal component analysis (PCA) identified elastic regions critical for biological activity, and the stable energy levels (-5000 kJ/mol) further confirmed the reliability of the binding. Moreover, the vaccine exhibited high expression levels in E. coli, as demonstrated using SnapGene software with the pET-29a( +) vector. The vaccine demonstrated strong binding affinities with immune receptors and predicted activation of both humoral and cellular immune responses, including increased IgM, IgG, and cytokine levels. However, experimental validation is necessary to confirm safety and efficacy, and challenges in vaccine manufacturing and variable immune responses across populations must also be addressed.

摘要

坏死梭杆菌是一种革兰氏阴性厌氧菌病原体,可导致 Lemierre 综合征、牛蹄腐病和其他坏死性感染。抗菌药物耐药性的增加以及有效疫苗的缺乏凸显了替代治疗策略的必要性。本研究采用计算生物学方法设计一种针对坏死梭杆菌跨膜蛋白的多表位疫苗,以引发强烈的免疫反应。对所选蛋白质进行毒性、致敏性和抗原性评估,随后进行表位预测和筛选。使用免疫原性接头连接 B 细胞和 T 细胞表位,形成一种疫苗构建体,其在大肠杆菌中的 VaxiJen 评分为 0.7293,溶解度评分为 8.30。使用 TrRosetta 和 Ramachandran 图进行的结构验证证实,97.4% 的残基位于有利区域,表明具有高稳定性。群体覆盖率分析表明全球适用性超过 99%,进一步增强了其潜在影响。对接研究揭示了与免疫受体 TLR7 和 TLR8 的强相互作用。TLR7 形成 12 个氢键,而 TLR8(A) 形成 9 个,TLR8(B) 表现出最高的相互作用,与疫苗构建体形成 13 个氢键。分子动力学模拟证实了结构稳定性和受体结合。均方根偏差稳定在 4 - 5 Å 左右,表明疫苗 - TLR8(B) 复合物的结构稳定性。回转半径保持在 36 Å 左右,显示随着时间略有压实,而均方根波动在柔性区域峰值为 8 - 9 Å,在稳定的核心区域波动较小(1.5 - 2.5 Å)。主成分分析(PCA)确定了对生物活性至关重要的弹性区域,稳定的能量水平(-5000 kJ/mol)进一步证实了结合的可靠性。此外,如使用带有 pET - 29a(+) 载体的 SnapGene 软件所示,该疫苗在大肠杆菌中表现出高表达水平。该疫苗与免疫受体表现出强结合亲和力,并预测可激活体液免疫和细胞免疫反应,包括 IgM、IgG 和细胞因子水平的升高。然而,需要进行实验验证以确认安全性和有效性,并且还必须解决疫苗生产中的挑战以及不同人群中可变的免疫反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1760/12050319/cf57c2f95b41/41598_2025_166_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验