Suppr超能文献

单壁碳纳米管上气体吸附的模拟

Simulation of gas adsorption on single-walled carbon nanotubes.

作者信息

Bahmanzadgan Fatemeh, Ghaemi Ahad, Qasemnazhand Mohammad, Molaee Milad

机构信息

School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran.

Department of Physics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.

出版信息

Sci Rep. 2025 May 4;15(1):15595. doi: 10.1038/s41598-025-99988-5.

Abstract

This study combined Grand Canonical Monte Carlo molecular simulations with density functional theory calculations to systematically examine the adsorption of N, O, H, CO, and CH on nineteen single-walled carbon-nanotube (SWCNT) architectures. The effects of temperature, pressure, nanotube diameter, chirality, and vacancy defects on adsorption energies and isosteric heats are quantified. Binary N/O separation within a (22,18) SWCNT is modelled by analyzing energy-distribution functions and spatial adsorption fields. Intermolecular interactions are represented with the Universal Force Field and Lennard-Jones potentials. Lower temperatures and higher pressures enhanced adsorption capacity, while adsorption energies and isosteric heats decreased accordingly. Furthermore, smaller-diameter SWCNTs exhibited superior selectivity for air separation. Neglecting electrostatic and hydrogen-bonding terms for non-polar gases is demonstrated to reduce computational cost without sacrificing accuracy. These findings establish a robust framework for rationalizing SWCNT-based adsorbents for gas-separation applications.

摘要

本研究将巨正则蒙特卡罗分子模拟与密度泛函理论计算相结合,系统地研究了N、O、H、CO和CH在19种单壁碳纳米管(SWCNT)结构上的吸附情况。量化了温度、压力、纳米管直径、手性和空位缺陷对吸附能和等量吸附热的影响。通过分析能量分布函数和空间吸附场,对(22,18) SWCNT内的二元N/O分离进行了建模。分子间相互作用用通用力场和 Lennard-Jones 势表示。较低的温度和较高的压力提高了吸附容量,而吸附能和等量吸附热则相应降低。此外,较小直径的SWCNT对空气分离表现出优异的选择性。结果表明,对于非极性气体,忽略静电和氢键项可在不牺牲准确性的情况下降低计算成本。这些发现为合理化基于SWCNT的气体分离应用吸附剂建立了一个强大的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/123d/12050303/100c1155e9df/41598_2025_99988_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验