Laitila Jenni, Lewis Christopher T A, Hessel Anthony L, Primiano Guido, Hernandez-Lain Aurelio, Fiorillo Chiara, Lawlor Michael W, Ottenheijm Coen A C, Jungbluth Heinz, Man Ka Fu, Fornili Arianna, Ochala Julien
Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, University of Helsinki, Helsinki, Finland.
J Physiol. 2025 Jun;603(12):3533-3550. doi: 10.1113/JP288109. Epub 2025 May 5.
In skeletal muscle, troponin T (TnT) exists in two isoforms, slow skeletal TnT (ssTnT) and fast skeletal TnT (fsTnT), encoded by the TNNT1 and TNNT3 genes, respectively. Nonsense or missense TNNT1 variants have been associated with skeletal muscle weakness and contractures and a histopathological appearance of nemaline myopathy (NM) on muscle biopsy. Little is known about how TNNT1 mutations ultimately lead to muscle dysfunction, preventing the development of targeted therapeutic interventions. Here, we aimed to identify the underlying molecular biophysical mechanisms, by investigating isolated skeletal myofibres from patients with TNNT1-related NM as well as from controls through a combination of structural and functional assays. Our studies revealed variable and unusual ssTnT and fsTnT expression patterns and post-translational modifications. We also observed that, in the presence of TNNT1 variants, the thin filament was more compliant, and this was associated with a higher myofibre Ca sensitivity. Altogether, our findings suggest TnT remodelling as the key mechanism ultimately leading to molecular and cellular hyper-contractility, and then inhibitors of altered contractility as potential therapeutic modalities for TNNT1-associated NM. KEY POINTS: No therapeutic treatment exists for patients with genetic TNNT1 mutations and skeletal muscle weakness/contractures. In these patients, expression and post-translational modifications of troponin T are severely disrupted. These are associated with changes in thin filament compliance where troponin T is located. All these induce muscle fibre hyper-contractility that can be reversed by mavacamten, a myosin ATPase inhibitor.
在骨骼肌中,肌钙蛋白T(TnT)以两种异构体形式存在,即慢骨骼肌TnT(ssTnT)和快骨骼肌TnT(fsTnT),分别由TNNT1和TNNT3基因编码。无义或错义TNNT1变异与骨骼肌无力和挛缩以及肌肉活检时出现的线状体肌病(NM)组织病理学表现相关。关于TNNT1突变如何最终导致肌肉功能障碍,目前知之甚少,这阻碍了靶向治疗干预措施的开发。在此,我们旨在通过对TNNT1相关NM患者以及对照的分离骨骼肌肌纤维进行结构和功能分析相结合的方法,确定潜在的分子生物物理机制。我们的研究揭示了ssTnT和fsTnT可变且异常的表达模式以及翻译后修饰。我们还观察到,在存在TNNT1变异的情况下,细肌丝更具柔韧性,这与肌纤维对钙的敏感性较高有关。总之,我们的研究结果表明TnT重塑是最终导致分子和细胞过度收缩的关键机制,因此改变收缩性的抑制剂可能是TNNT1相关NM的潜在治疗方式。要点:对于患有遗传性TNNT1突变和骨骼肌无力/挛缩的患者,目前尚无治疗方法。在这些患者中,肌钙蛋白T的表达和翻译后修饰严重受损。这些与肌钙蛋白T所在的细肌丝柔韧性变化有关。所有这些都会导致肌纤维过度收缩,而肌球蛋白ATP酶抑制剂mavacamten可以逆转这种情况。
Health Technol Assess. 2024-10
Cochrane Database Syst Rev. 2018-9-19
Cochrane Database Syst Rev. 2022-5-20
J Clin Invest. 2024-2-1
Am J Physiol Cell Physiol. 2023-7-1
Proc Natl Acad Sci U S A. 2022-11-29
Muscle Nerve. 2022-10