Ransdell Joseph L, Carrasquillo Yarimar, Bosch Marie K, Mellor Rebecca L, Ornitz David M, Nerbonne Jeanne M
Cardiovascular Division, Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
J Gen Physiol. 2025 Jul 7;157(4). doi: 10.1085/jgp.202413597. Epub 2025 May 5.
Mutations in FGF14, which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia type 27 (SCA27), a multisystem disorder associated with deficits in motor coordination and cognitive function. Mice lacking iFGF14 (Fgf14-/-) display similar phenotypes, and we have previously shown that the deficits in motor coordination reflect reduced excitability of cerebellar Purkinje neurons, owing to a hyperpolarizing shift in the voltage-dependence of voltage-gated Na+ (Nav) current steady-state inactivation. Here, we present the results of experiments designed to test the hypothesis that loss of iFGF14 also attenuates the intrinsic excitability of mature hippocampal pyramidal neurons. Current-clamp recordings from CA1 pyramidal neurons in acute in vitro slices, however, revealed that evoked repetitive firing rates were higher in Fgf14-/- than in wild type (WT) cells. Also, in contrast with Purkinje neurons, voltage-clamp recordings demonstrated that the loss of iFGF14 did not affect the voltage dependence of steady-state inactivation of the Nav currents in CA1 pyramidal neurons. In addition, in contrast with results reported for neonatal (rat) hippocampal pyramidal neurons in dissociated cell culture, immunohistochemical experiments revealed that loss of iFGF14 does not disrupt the localization or alter the normalized distribution of α-Nav1.6 or α-ankyrin G labeling along the axon initial segments (AIS) of mature hippocampal CA1 neurons in situ. However, the integrated intensities of α-Nav1.6 labeling were significantly higher along the AIS of Fgf14-/-, compared with WT, adult hippocampal CA1 pyramidal neurons, consistent with the marked increase in the excitability of CA1 neurons with the loss of iFGF14.
编码细胞内成纤维细胞生长因子14(iFGF14)的FGF14基因突变与27型脊髓小脑共济失调(SCA27)相关,SCA27是一种多系统疾病,与运动协调和认知功能缺陷有关。缺乏iFGF14的小鼠(Fgf14-/-)表现出相似的表型,我们之前已经表明,运动协调缺陷反映了小脑浦肯野神经元兴奋性降低,这是由于电压门控钠(Nav)电流稳态失活的电压依赖性发生超极化偏移所致。在这里,我们展示了旨在检验iFGF14缺失也会减弱成熟海马锥体神经元内在兴奋性这一假设的实验结果。然而,急性体外脑片中CA1锥体神经元的电流钳记录显示,Fgf14-/-小鼠的诱发重复放电率高于野生型(WT)细胞。此外,与浦肯野神经元不同,电压钳记录表明,iFGF14的缺失并不影响CA1锥体神经元中Nav电流稳态失活的电压依赖性。另外,与解离细胞培养中新生(大鼠)海马锥体神经元的报道结果相反,免疫组织化学实验显示,iFGF14的缺失不会破坏成熟海马CA1神经元轴突起始段(AIS)上α-Nav1.6或α-锚蛋白G标记的定位,也不会改变其标准化分布。然而,与WT成年海马CA1锥体神经元相比,Fgf14-/-小鼠海马CA1神经元AIS上α-Nav1.6标记的积分强度显著更高,这与iFGF14缺失导致CA1神经元兴奋性显著增加一致。