Cabana Jovanni, Zhang Zihao, Pan Zeyou, Kumar Pawan, Wu Xiangkun, Bodi Andras, Garcia Gustavo A, Shen Yang, Xiao Xintong, Ma Hao, Huang Chen, Liu Chengyuan, Zhao Long, Pan Yang, Zhou Zhongyue, van Bokhoven Jeroen A, Hemberger Patrick
Paul Scherrer Institute, 5232, Villigen, Switzerland.
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093, Zurich, Switzerland.
ChemSusChem. 2025 Jul 17;18(14):e202500516. doi: 10.1002/cssc.202500516. Epub 2025 May 26.
Dechlorination channels and pathways to olefins and aromatics in the catalytic pyrolysis of the polyvinylchloride (PVC) model compound 1,3-dichlorobutane are revealed using operando photoelectron photoion coincidence (PEPICO) spectroscopy. Experimental and computational results agree that the primary pathway involves double dehydrochlorination producing 1,3-butadiene and HCl. Minor radical channels are evidenced by the detection of chloromethyl, methyl, and propargyl radicals in thermal decomposition, while chlorine radicals are absent. HZSM-5 zeolites lower the reaction temperature and facilitate 1,3-butadiene association reactions producing C-C olefins. Further reaction steps, detected experimentally and in part isomer-selectively, mimic previously postulated cross-linking pathways to aromatics in PVC catalytic pyrolysis. This study identifies CC coupling as well as Diels-Alder dimerization of butadiene to yield polymethylated cyclopentadienes. These are central precursors to aromatics, for example, benzene, toluene, and xylenes (BTX). Ring expansion and contraction as well as transmethylation reactions are found to be dominant routes to aromatic products. The mechanisms during thermocatalytic conversion of PVC are applicable to other plastics and resemble the chemistry upon methanol- and methylchloride-to-hydrocarbon and aromatics conversion, which will inspire new strategies to enhance selectivity towards aromatics and mitigate coke formation.
采用原位光电子光离子符合(PEPICO)光谱揭示了聚氯乙烯(PVC)模型化合物1,3 - 二氯丁烷催化热解过程中脱氯生成烯烃和芳烃的通道及途径。实验和计算结果均表明,主要途径是通过双脱氯化氢生成1,3 - 丁二烯和HCl。热分解过程中检测到氯甲基、甲基和炔丙基自由基,证明了存在次要的自由基通道,但未检测到氯自由基。HZSM - 5沸石降低了反应温度,并促进了1,3 - 丁二烯的缔合反应生成碳 - 碳烯烃。实验检测到并部分实现了异构体选择性的进一步反应步骤,模拟了先前推测的PVC催化热解中生成芳烃的交联途径。本研究确定了碳 - 碳偶联以及丁二烯的狄尔斯 - 阿尔德二聚反应生成多甲基化环戊二烯。这些是芳烃(如苯、甲苯和二甲苯(BTX))的核心前体。发现扩环和缩环以及甲基转移反应是生成芳烃产物的主要途径。PVC热催化转化过程中的机理适用于其他塑料,并且类似于甲醇和氯甲烷转化为烃类和芳烃时的化学反应,这将激发新的策略来提高对芳烃的选择性并减少焦炭形成。