Suppr超能文献

通过抓握运动学实现有效的自闭症分类

Effective Autism Classification Through Grasping Kinematics.

作者信息

Freud Erez, Ahmad Zoha, Shelef Eitan, Hadad Bat Sheva

机构信息

Department of Psychology, York University, Toronto, Canada.

Centre for Vision Research, York University, Toronto, Canada.

出版信息

Autism Res. 2025 Jun;18(6):1170-1181. doi: 10.1002/aur.70049. Epub 2025 May 5.

Abstract

Autism is a complex neurodevelopmental condition, where motor abnormalities play a central role alongside social and communication difficulties. These motor symptoms often manifest in early childhood, making them critical targets for early diagnosis and intervention. This study aimed to assess whether kinematic features from a naturalistic grasping task could accurately distinguish autistic participants from non-autistic ones. We analyzed grasping movements of autistic and non-autistic young adults, tracking two markers placed on the thumb and index finger. Using a subject-wise cross-validated classifiers, we achieved accuracy scores of above 84%. Receiver operating characteristic analysis revealed strong classification performance with area under the curve values of above 0.95 at the subject-wise analysis and above 0.85 at the trial-wise analysis. These findings indicate strong reliability in accurately distinguishing autistic participants from non-autistic ones. These findings suggest that subtle motor control differences can be effectively captured, offering a promising approach for developing accessible and reliable diagnostic tools for autism.

摘要

自闭症是一种复杂的神经发育疾病,运动异常与社交和沟通困难一样起着核心作用。这些运动症状通常在幼儿期就会出现,使其成为早期诊断和干预的关键目标。本研究旨在评估自然抓握任务中的运动学特征能否准确区分自闭症参与者和非自闭症参与者。我们分析了自闭症和非自闭症青年成人的抓握动作,追踪放置在拇指和食指上的两个标记。使用个体交叉验证分类器,我们获得了84%以上的准确率。受试者工作特征分析显示,在个体分析中曲线下面积值高于0.95,在试验分析中高于0.85,具有很强的分类性能。这些发现表明在准确区分自闭症参与者和非自闭症参与者方面具有很强的可靠性。这些发现表明,可以有效捕捉到细微的运动控制差异,为开发方便可靠的自闭症诊断工具提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61b1/12166512/6acd7f11a344/AUR-18-1170-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验