Suppr超能文献

药物KANs:一种利用KANs增强药物-靶点相互作用预测的范式。

DrugKANs: A Paradigm to Enhance Drug-Target Interaction Prediction With KANs.

作者信息

Fu Xiangzheng, Du Zhenya, Chen Yifan, Chen Haiting, Zhuo Linlin, Lu Aiping, Cao Dongsheng, Yao Xiaojun

出版信息

IEEE J Biomed Health Inform. 2025 May 5;PP. doi: 10.1109/JBHI.2025.3566931.

Abstract

Identifyingpotential drug-target interactions (DTIs) is crucial for understanding drug mechanisms, and recent computational methods have yielded promising results in this area. However, these methods face several challenges, including limited model generalization due to heavy reliance on multiple similarity datasets and complex feature extraction, as well as a lack of interpretability by ignoring intrinsic information about drugs and targets. To address these challenges, we propose DrugKANs, a novel DTI prediction model that enhances both the quality and interpretability of DTI representations by integrating a dual-tower architecture with Kolmogorov-Arnold Network (KAN) technology. Our model involves utilizing a pre-trained model to derive initial representations of drugs and targets, and employing a lightweight attention mechanism to capture key features, thereby improving representation quality. We leverage the dual-tower architecture and a lightweight feature interaction mechanism to extract high-level representations separately for drugs and targets, aiming to reduce complex feature interactions and mitigate overfitting. Additionally, we incorporate a contrastive learning strategy within the drug-target bipartite graph to address sparse neighborhood effects and enhance topological information. The inclusion of KAN technology further improves the interpretability of the DTI prediction model. Experimental results on public datasets demonstrate that our model predicts DTIs effectively, underscoring its potential as a valuable tool in drug discovery. This comprehensive methodology presents a balanced approach to overcoming the identified challenges in DTI prediction. Our data and code are available at: https://github.com/Excelsior511/DrugKANs.

摘要

识别潜在的药物-靶点相互作用(DTIs)对于理解药物作用机制至关重要,并且最近的计算方法在该领域已取得了有前景的成果。然而,这些方法面临若干挑战,包括由于严重依赖多个相似性数据集和复杂的特征提取导致模型泛化能力有限,以及由于忽略药物和靶点的内在信息而缺乏可解释性。为应对这些挑战,我们提出了DrugKANs,这是一种新颖的DTI预测模型,通过将双塔架构与柯尔莫哥洛夫-阿诺德网络(KAN)技术相结合,提高了DTI表征的质量和可解释性。我们的模型包括利用预训练模型来推导药物和靶点的初始表征,并采用轻量级注意力机制来捕捉关键特征,从而提高表征质量。我们利用双塔架构和轻量级特征交互机制分别为药物和靶点提取高级表征,旨在减少复杂的特征交互并减轻过拟合。此外,我们在药物-靶点二分图中纳入对比学习策略,以解决稀疏邻域效应并增强拓扑信息。KAN技术的加入进一步提高了DTI预测模型的可解释性。在公共数据集上的实验结果表明,我们的模型能够有效地预测DTIs,凸显了其作为药物发现中有价值工具的潜力。这种综合方法提供了一种平衡的方式来克服DTI预测中所识别的挑战。我们的数据和代码可在以下网址获取:https://github.com/Excelsior511/DrugKANs。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验