Suppr超能文献

INGNN-DTI:利用可解释嵌套图神经网络和预训练分子模型预测药物-靶标相互作用。

iNGNN-DTI: prediction of drug-target interaction with interpretable nested graph neural network and pretrained molecule models.

机构信息

Department of Biochemistry, Western University, London, ON, N6G 2V4, Canada.

Department of Computer Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.

出版信息

Bioinformatics. 2024 Mar 4;40(3). doi: 10.1093/bioinformatics/btae135.

Abstract

MOTIVATION

Drug-target interaction (DTI) prediction aims to identify interactions between drugs and protein targets. Deep learning can automatically learn discriminative features from drug and protein target representations for DTI prediction, but challenges remain, making it an open question. Existing approaches encode drugs and targets into features using deep learning models, but they often lack explanations for underlying interactions. Moreover, limited labeled DTIs in the chemical space can hinder model generalization.

RESULTS

We propose an interpretable nested graph neural network for DTI prediction (iNGNN-DTI) using pre-trained molecule and protein models. The analysis is conducted on graph data representing drugs and targets by using a specific type of nested graph neural network, in which the target graphs are created based on 3D structures using Alphafold2. This architecture is highly expressive in capturing substructures of the graph data. We use a cross-attention module to capture interaction information between the substructures of drugs and targets. To improve feature representations, we integrate features learned by models that are pre-trained on large unlabeled small molecule and protein datasets, respectively. We evaluate our model on three benchmark datasets, and it shows a consistent improvement on all baseline models in all datasets. We also run an experiment with previously unseen drugs or targets in the test set, and our model outperforms all of the baselines. Furthermore, the iNGNN-DTI can provide more insights into the interaction by visualizing the weights learned by the cross-attention module.

AVAILABILITY AND IMPLEMENTATION

The source code of the algorithm is available at https://github.com/syan1992/iNGNN-DTI.

摘要

动机

药物-靶标相互作用(DTI)预测旨在识别药物和蛋白质靶标之间的相互作用。深度学习可以自动从药物和蛋白质靶标表示中学习有区别的特征,用于 DTI 预测,但仍存在挑战,这是一个悬而未决的问题。现有方法使用深度学习模型将药物和靶标编码为特征,但它们通常缺乏对潜在相互作用的解释。此外,化学空间中有限的标记 DTI 可能会阻碍模型的泛化。

结果

我们提出了一种使用预训练分子和蛋白质模型的可解释嵌套图神经网络(iNGNN-DTI)用于 DTI 预测。通过使用特定类型的嵌套图神经网络对代表药物和靶标的图数据进行分析,其中目标图是使用 Alphafold2 基于 3D 结构创建的。这种架构在捕获图数据的子结构方面具有很强的表现力。我们使用交叉注意模块来捕获药物和靶标子结构之间的相互作用信息。为了提高特征表示,我们整合了分别在大型未标记小分子和蛋白质数据集上预训练的模型所学习的特征。我们在三个基准数据集上评估了我们的模型,它在所有数据集的所有基线模型上都表现出一致的改进。我们还在测试集中运行了一个具有以前未见的药物或靶标的实验,我们的模型优于所有基线模型。此外,iNGNN-DTI 可以通过可视化交叉注意模块学习的权重,为相互作用提供更多的见解。

可用性和实现

算法的源代码可在 https://github.com/syan1992/iNGNN-DTI 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e7/10957515/2ef1b6f42cac/btae135f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验