Cheng Haoying, Li Yaoxin, Wang Zhanyang, Liu Xuwei, Jin Huihui, Xu Jiaoxing, Guan Lunhui
State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
J Colloid Interface Sci. 2025 Oct;695:137718. doi: 10.1016/j.jcis.2025.137718. Epub 2025 Apr 27.
Two-electron oxygen reduction reaction (2e ORR) offers a sustainable pathway for hydrogen peroxide production, yet its efficiency relies on cost-effective electrocatalysts with tailored active sites. Herein, a hybrid ZnO@ZnO nanorod with tunable oxygen vacancies (O) in the outer-skin peroxidate thin film was developed as a neutral electrocatalyst for hydrogen peroxide production through cation-terminated facet-engineering and surface amorphous peroxidation. The optimized ZnO@ZnO (named am-ZNR-180-24) electrocatalyst with a moderate oxygen vacancy concentration (∼17.9 at.% from XPS) on {0001} polar-facets demonstrates a nearly 100 % selectivity for HO generation, achieving a high production rate of 11.63 mol·g·h, with ultrahigh and stable Faradaic efficiency (>90 %) in a flow-cell system, which ranks among the highest levels of reported metal compounds electrocatalysts. Characterizations and theoretical results unveil that O on the polar (002) plane modulate the Zn 3d-band center, optimizing the adsorption of *OOH intermediates to favor 2e ORR.
双电子氧还原反应(2e ORR)为过氧化氢的生产提供了一条可持续的途径,但其效率依赖于具有定制活性位点的经济高效的电催化剂。在此,通过阳离子端接面工程和表面非晶态过氧化反应,开发了一种在外皮过氧化物薄膜中具有可调氧空位(O)的混合ZnO@ZnO纳米棒,作为用于过氧化氢生产的中性电催化剂。在{0001}极性面上具有适度氧空位浓度(XPS分析约为17.9 at.%)的优化后的ZnO@ZnO(命名为am-ZNR-180-24)电催化剂对HO生成表现出近100%的选择性,实现了11.63 mol·g·h的高产率,在流动池系统中具有超高且稳定的法拉第效率(>90%),这在已报道的金属化合物电催化剂中处于最高水平之列。表征和理论结果表明,极性(002)面上的O调节Zn 3d带中心,优化*OOH中间体的吸附以利于2e ORR。