Suppr超能文献

通过整合强化学习和药代动力学-药效学模型在多目标治疗中实现精准给药:在羟基脲治疗真性红细胞增多症中的应用

Precision Dosing in Presence of Multiobjective Therapies by Integrating Reinforcement Learning and PK-PD Models: Application to Givinostat Treatment of Polycythemia Vera.

作者信息

De Carlo Alessandro, Tosca Elena Maria, Magni Paolo

机构信息

Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2025 Jun;14(6):1018-1031. doi: 10.1002/psp4.70012. Epub 2025 May 5.

Abstract

Precision dosing aims to optimize and customize pharmacological treatment at the individual level. The integration of pharmacometric models with Reinforcement Learning (RL) algorithms is currently under investigation to support the personalization of adaptive dosing therapies. In this study, this hybrid technique is applied to the real multiobjective precision dosing problem of givinostat treatment in polycythemia vera (PV) patients. PV is a chronic myeloproliferative disease with an overproduction of platelets (PLT), white blood cells (WBC), and hematocrit (HCT). The therapeutic goal is to simultaneously normalize the levels of these efficacy/safety biomarkers, thus inducing a complete hematological response (CHR). An RL algorithm, Q-Learning (QL), was integrated with a PK-PD model describing the givinostat effect on PLT, WBC, and HCT to derive both an adaptive dosing protocol (QL-agent) for the whole population and personalized dosing strategies by coupling a specific QL-agent to each patient (QL-agents). QL-agent learned a general adaptive dosing protocol that achieved a similar CHR rate (77% vs. 83%) when compared to the actual givinostat clinical protocol on 10 simulated populations. Treatment efficacy and safety increased with a deeper dosing personalization by QL-agents. These QL-based patient-specific adaptive dosing rules outperformed both the clinical protocol and QL-agent by reaching the CHR in 93% of the test patients and completely avoided severe toxicities during the whole treatment period. These results confirm that RL and PK-PD models can be valid tools for supporting adaptive dosing strategies as interesting performances were achieved in both learning a general set of rules and in customizing treatment for each patient.

摘要

精准给药旨在在个体层面优化和定制药物治疗。目前正在研究将药代动力学模型与强化学习(RL)算法相结合,以支持适应性给药疗法的个性化。在本研究中,这种混合技术被应用于真性红细胞增多症(PV)患者使用givinostat治疗的实际多目标精准给药问题。PV是一种慢性骨髓增殖性疾病,血小板(PLT)、白细胞(WBC)和血细胞比容(HCT)过度生成。治疗目标是同时使这些疗效/安全性生物标志物水平正常化,从而诱导完全血液学缓解(CHR)。一种RL算法,即Q学习(QL),与一个描述givinostat对PLT、WBC和HCT影响的PK-PD模型相结合,以推导适用于整个人群的适应性给药方案(QL-智能体),并通过将特定QL-智能体与每个患者耦合来制定个性化给药策略(QL-智能体)。QL-智能体学习了一种通用的适应性给药方案,在10个模拟人群中,与实际givinostat临床方案相比,该方案实现了相似的CHR率(77%对83%)。通过QL-智能体进行更深层次的给药个性化,治疗效果和安全性得到了提高。这些基于QL的患者特异性适应性给药规则在93%的测试患者中达到了CHR,优于临床方案和QL-智能体,并且在整个治疗期间完全避免了严重毒性。这些结果证实,RL和PK-PD模型可以成为支持适应性给药策略的有效工具,因为在学习一组通用规则和为每个患者定制治疗方面都取得了有趣的成果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验