Suppr超能文献

从NiCoS/CoS纳米薄片中收集能量:一种通过形态控制和使用氧化还原添加剂电解质的双重策略。

Energy harvesting from NiCoS/CoS nanoflakes: a two-fold strategy by morphology control and using redox-additive electrolytes.

作者信息

Bansal Love, Rath Deb Kumar, Pandey Shivansh Raj, Sahu Bhumika, Ahlawat Nikita, Chondath Subin Kaladi, Kumar Rajesh

机构信息

Material and Devices Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol-453552, India.

Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol-453552, India.

出版信息

Nanoscale. 2025 May 23;17(20):12826-12836. doi: 10.1039/d5nr01502b.

Abstract

Designing materials with an appropriate (nano) architecture could prove to be an effective strategy to improve several electrochemical properties to yield high-energy storage devices for their practical applications. Here, a two-fold approach of choosing an appropriate synthesis method (pulsed electrodeposition) and a redox-additive electrolyte has been adopted for this purpose. A customized pulsed electrodeposition technique, used for obtaining macroporous NiCoS/CoS nanoflakes, has been designed, which shows improved energy storage (as pseudocapacitors) application. Specific capacitance, when used in electrode form, has been further enhanced by choosing an optimized electrolyte consisting of 1 M KOH and 0.05 M K[FeCN], where the latter has been used as a redox-additive electrolyte. The multifunctional electrode shows a high capacitance of ∼7000 mF cm. The addition of the redox-additive material to the electrolyte increases the diffusion coefficient (4-fold), which in turn increases the energy storage properties of the material. The improved electrochemical properties have been utilized in designing a prototype solid-state symmetric supercapacitor device, which shows a capacitance value of 380 F g with a high power density and energy density. Additionally, the device exhibits an exceptionally high capacitance retention of 100% after 2000 continuous switchings at high current density. The device performance under real-life on-field conditions has also been demonstrated. This work significantly shows that surface morphology modification by adopting a custom pulsed electrodeposition technique and redox-additive electrolyte optimization is an effective strategy to enhance the electrochemical energy storage performance.

摘要

设计具有合适(纳米)结构的材料可能是一种有效的策略,可改善多种电化学性能,以生产出适用于实际应用的高能量存储设备。为此,本文采用了一种双重方法,即选择合适的合成方法(脉冲电沉积)和氧化还原添加剂电解质。设计了一种定制的脉冲电沉积技术,用于制备大孔NiCoS/CoS纳米片,该技术显示出改善的能量存储(作为赝电容器)应用。当以电极形式使用时,通过选择由1 M KOH和0.05 M K[FeCN]组成的优化电解质,比电容得到了进一步提高,其中后者用作氧化还原添加剂电解质。多功能电极显示出约7000 mF cm的高电容。向电解质中添加氧化还原添加剂材料会增加扩散系数(4倍),进而提高材料的能量存储性能。改善后的电化学性能已被用于设计一种原型固态对称超级电容器装置,该装置显示出380 F g的电容值,具有高功率密度和能量密度。此外,该装置在高电流密度下连续切换2000次后,电容保持率高达100%。还展示了该装置在实际现场条件下的性能。这项工作显著表明,采用定制脉冲电沉积技术和氧化还原添加剂电解质优化进行表面形态修饰是提高电化学能量存储性能的有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验