Suppr超能文献

基于SNAP标签的重组光免疫治疗剂,用于选择性检测和杀伤可光接触的表达黑素转铁蛋白的黑色素瘤和三阴性乳腺癌。

SNAP-Tag-Based Recombinant Photoimmunotherapeutic Agents for the Selective Detection and Killing of Light-Accessible Melanotransferrin-Expressing Melanoma and Triple-Negative Breast Cancer.

作者信息

Magagoum Suzanne Hippolite, Biteghe Fleury Augustin Nsole, Siwe Gael Tchokomeni, Lang Dirk, Lekena Nkhasi, Barth Stefan

机构信息

Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.

Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, USA.

出版信息

Cancer Med. 2025 May;14(9):e70912. doi: 10.1002/cam4.70912.

Abstract

BACKGROUND

Melanoma and triple negative breast cancer (TNBC) represent the most aggressive skin and breast cancer subtypes and are associated with poor diagnostic and limited therapeutic options leading to poor prognosis. Melanotransferrin/p97 (MTf), initially identified as a tumor-associated antigen (TAA) in melanoma, is overexpressed in various solid tumors, including TNBC. Beyond its high differential expression and dreadful tumorigenic impact, MTf is also associated with chemoresistance development, and its inhibition significantly hampers tumor progression, making MTf a promising target for effective targeted therapies. Near-infrared photoimmunotherapy (NIR-PIT) is an approach that combines the precision of antibodies directed against specific TAA with the phototoxic effects of a light-sensitive photosensitizer (IR700), activated by near-infrared (NIR) light irradiation. This study aimed to generate a novel photoimmunoconjugate to specifically destroy MTf-positive melanoma and TNBC cells in vitro following NIR light irradiation.

METHODS

A single-chain variable fragment (scFv) assembled from anti-MTf antibody L49 was recombinantly fused with the SNAP-tag protein (L49(scFv)-SNAP), capable of irreversible and autocatalytic conjugation to any O(6)-benzylguanine (BG) substrate in a 1:1 stoichiometry. Purified full-length SNAP-tag-based fusion protein (L49(scFv)-SNAP-tag) was either conjugated to a BG-modified fluorescent imaging agent (Alexa 488) to specifically assess its selective binding to MTf-expressing cell lines via confocal imaging and flow cytometry or to a BG-modified light-sensitive photosensitizer (IR700) to evaluate its phototoxic properties using an XTT cell viability assay.

RESULTS

The selective binding and internalization of L49(scFv)-SNAP-Alexa 488 towards MTf-positive melanoma and TNBC cell lines were successfully demonstrated with MTF expression percentages ranging from 52.8 to 83.1. Once confirmed, dose-dependent phototoxicity of L49(scFv)-SNAP-IR700 was achieved on illuminated MTf-positive cell lines showing IC values in the nanomolar range (2.20-5.24 nM).

CONCLUSION

This study highlights the therapeutic potential of MTf as a promising target for the diagnosis as well as selective and efficient elimination of NIR-light-accessible melanoma and TNBC by NIR-PIT.

TRIAL REGISTRATION

NCT03769506.

摘要

背景

黑色素瘤和三阴性乳腺癌(TNBC)分别是最具侵袭性的皮肤癌和乳腺癌亚型,其诊断困难,治疗选择有限,预后较差。黑色素转铁蛋白/p97(MTf)最初被鉴定为黑色素瘤中的一种肿瘤相关抗原(TAA),在包括TNBC在内的各种实体瘤中均有过表达。除了其高差异表达和可怕的致瘤影响外,MTf还与化疗耐药性的发展有关,抑制MTf可显著阻碍肿瘤进展,这使得MTf成为有效靶向治疗的一个有前景的靶点。近红外光免疫疗法(NIR-PIT)是一种将针对特定TAA的抗体的精准性与近红外(NIR)光照射激活的光敏剂(IR700)的光毒性效应相结合的方法。本研究旨在制备一种新型光免疫偶联物,在近红外光照射后体外特异性破坏MTf阳性的黑色素瘤和TNBC细胞。

方法

由抗MTf抗体L49组装而成的单链可变片段(scFv)与SNAP-tag蛋白重组融合(L49(scFv)-SNAP),该蛋白能够以1:1的化学计量比与任何O(6)-苄基鸟嘌呤(BG)底物进行不可逆的自催化偶联。纯化的基于全长SNAP-tag的融合蛋白(L49(scFv)-SNAP-tag)要么与BG修饰的荧光成像剂(Alexa 488)偶联,通过共聚焦成像和流式细胞术特异性评估其与表达MTf的细胞系的选择性结合,要么与BG修饰的光敏剂(IR700)偶联,使用XTT细胞活力测定法评估其光毒性特性。

结果

成功证明了L49(scFv)-SNAP-Alexa 488对MTf阳性的黑色素瘤和TNBC细胞系的选择性结合和内化,MTF表达百分比范围为52.8%至83.1%。一旦得到证实,L49(scFv)-SNAP-IR700在光照的MTf阳性细胞系上实现了剂量依赖性光毒性,IC值在纳摩尔范围内(2.20 - 5.24 nM)。

结论

本研究突出了MTf作为一个有前景的靶点在诊断以及通过NIR-PIT选择性和高效消除近红外光可及的黑色素瘤和TNBC方面的治疗潜力。

试验注册

NCT03769506。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/137d/12053452/978fd91538c5/CAM4-14-e70912-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验