Suppr超能文献

用于聚酰胺膜微观结构调控及增强分离性能的光热辅助界面聚合

Photothermal-Assisted Interfacial Polymerization toward Microstructure Regulation of a Polyamide Membrane with Enhanced Separation Performance.

作者信息

Zhao Yanyu, Song Xiangju, Zheng Lin, Zhang Yan, Liang Wenyuan, Huang Minghua, Jiang Heqing

机构信息

School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, Shandong Province, China.

State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, Shandong Province, China.

出版信息

ACS Appl Mater Interfaces. 2025 May 14;17(19):28927-28936. doi: 10.1021/acsami.5c04520. Epub 2025 May 6.

Abstract

A highly permeable thin-film composite (TFC) polyamide membrane with efficient salt rejection is valuable for numerous industrial processes. To achieve this objective, it is essential to innovate the membrane fabrication process to produce an ultrathin polyamide separation layer. In this study, a photothermal-assisted interfacial polymerization (IP) strategy was proposed to fabricate TFC polyamide membranes by incorporating carboxylated carbon nanotubes (CNTs) with exceptional photothermal properties. CNTs absorb solar energy and convert it into heat, significantly elevating the temperature in their microregions, thereby accelerating the reaction between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) during the IP process. Exploiting the self-inhibition characteristics of IP, the preformed polyamide layer suppresses the subsequent diffusion of MPD into the reaction interface, resulting in the formation of an ultrathin polyamide layer. Consequently, the CNTs-modified polyamide membrane with photothermal assistance obtains a thickness of approximately 94 nm, significantly thinner than the control membrane (189 nm). Furthermore, it demonstrates a superior water flux of 54.4 L m h, higher than that of the pristine TFC membrane without CNTs and the conventional CNTs-modified membrane, while maintaining a NaCl rejection of ∼96%. The photothermal-assisted IP strategy provides some inspiration for engineering high-performance polyamide membranes available in various advanced separations.

摘要

一种具有高效脱盐性能的高渗透性薄膜复合(TFC)聚酰胺膜对众多工业过程具有重要价值。为实现这一目标,创新膜制备工艺以生产超薄聚酰胺分离层至关重要。在本研究中,提出了一种光热辅助界面聚合(IP)策略,通过掺入具有优异光热性能的羧基化碳纳米管(CNT)来制备TFC聚酰胺膜。CNT吸收太阳能并将其转化为热量,显著提高其微区温度,从而加速界面聚合过程中间苯二胺(MPD)和均苯三甲酰氯(TMC)之间的反应。利用界面聚合的自抑制特性,预先形成的聚酰胺层抑制了MPD随后向反应界面的扩散,导致形成超薄聚酰胺层。因此,具有光热辅助的CNT改性聚酰胺膜的厚度约为94nm,明显薄于对照膜(189nm)。此外,它表现出54.4L m h的优异水通量,高于不含CNT的原始TFC膜和传统CNT改性膜,同时保持约96%的NaCl截留率。光热辅助界面聚合策略为制备适用于各种先进分离的高性能聚酰胺膜提供了一些启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验