Suppr超能文献

通过减少胺类单体供应的限制来获得具有更大厚度和新形态特征的聚酰胺活性层的薄膜复合膜。

Accessing greater thickness and new morphology features in polyamide active layers of thin-film composite membranes by reducing restrictions in amine monomer supply.

作者信息

Grzebyk Kasia, Armstrong Mikayla D, Coronell Orlando

机构信息

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431.

出版信息

J Memb Sci. 2022 Feb 15;644. doi: 10.1016/j.memsci.2021.120112. Epub 2021 Nov 20.

Abstract

Polyamide formation, via interfacial polymerization (IP) during thin-film composite (TFC) membrane fabrication, is regarded as self-limiting-in the sense that the polyamide film limits its own growth as it forms. During IP, trimesoyl chloride (TMC) and -phenylenediamine (MPD) react rapidly to form an incipient polyamide film that densifies and slows the diffusion of the more permeable monomer (MPD), thereby limiting polyamide growth and yielding films that typically exhibit thicknesses <350 nm. The morphology of these polyamide films is characterized by a basal layer of void nodular and leaf-like features that is sometimes overlaid by a secondary layer of overlapping flat features. Here, we present evidence showing that polyamide active layers are substantially permeable to MPD, and that minimizing certain restrictions in the MPD supply conditions during IP can result in polyamide active layers of thicknesses several times greater (>1 μm) than those typically reported in the literature. In addition to the basal layer of void nodular features and secondary layer of overlapping flat features that characterize typical polyamide active layers, the thicker films also exhibited three additional morphological features: blanket-like layers atop the basal layer or other void features, multi-layer void structures, and/or void mega-nodules (up to over a micron in diameter). Overall, the results indicate that reducing restrictions in the MPD supply conditions during IP: (1) overcomes the limited polyamide growth observed in conventional TFC membrane fabrication and (2) leads to film morphologies with a more prominent void structure. This latter observation is consistent with recent literature describing the role of CO degassing and nanobubble confinement in the development of polyamide active layer morphology. Future studies could vary MPD supply conditions as a new tool to expand the range of achievable thicknesses in active layer casting, regulate active layer morphology and optimize nanobubble confinement conditions independently of MPD supply. Such capabilities could aid in the development of novel supports and TFC structures.

摘要

在制备薄膜复合(TFC)膜的过程中,通过界面聚合(IP)形成聚酰胺被认为是自限性的——即聚酰胺膜在形成过程中会限制自身的生长。在界面聚合过程中,均苯三甲酰氯(TMC)和间苯二胺(MPD)迅速反应形成初始聚酰胺膜,该膜致密化并减缓了渗透性更强的单体(MPD)的扩散,从而限制了聚酰胺的生长,得到的膜厚度通常小于350 nm。这些聚酰胺膜的形态特征是具有空洞结节状和叶状特征的基底层,有时会被重叠的扁平特征的第二层覆盖。在此,我们提供的证据表明,聚酰胺活性层对MPD具有相当的渗透性,并且在界面聚合过程中最小化MPD供应条件中的某些限制可导致聚酰胺活性层的厚度比文献中通常报道的厚度大几倍(>1μm)。除了表征典型聚酰胺活性层的空洞结节状特征的基底层和重叠扁平特征的第二层外,较厚的膜还表现出另外三种形态特征:基底层或其他空洞特征之上的毯状层、多层空洞结构和/或空洞大结节(直径可达1微米以上)。总体而言,结果表明在界面聚合过程中减少MPD供应条件中的限制:(1)克服了传统TFC膜制备中观察到的聚酰胺生长受限的问题,(2)导致具有更突出空洞结构的膜形态。后一观察结果与最近描述CO脱气和纳米气泡限制在聚酰胺活性层形态发展中的作用的文献一致。未来的研究可以改变MPD供应条件,作为一种新工具来扩大活性层浇铸中可实现的厚度范围,独立于MPD供应来调节活性层形态并优化纳米气泡限制条件。这些能力有助于新型支撑体和TFC结构的开发。

相似文献

3
Building Semipermeable Films One Monomer at a Time: Structural Advantages via Molecular Layer Deposition vs Interfacial Polymerization.
Chem Mater. 2024 Jan 18;36(3):1362-1374. doi: 10.1021/acs.chemmater.3c02519. eCollection 2024 Feb 13.
7
Ultrathin Film Composite Membranes Fabricated by Novel In Situ Free Interfacial Polymerization for Desalination.
ACS Appl Mater Interfaces. 2020 Jun 3;12(22):25304-25315. doi: 10.1021/acsami.0c05166. Epub 2020 May 18.
8
Highly permeable and highly selective ultrathin film composite polyamide membranes reinforced by reactable polymer chains.
J Colloid Interface Sci. 2019 Sep 15;552:418-425. doi: 10.1016/j.jcis.2019.05.070. Epub 2019 May 23.
10
Study of polyamide thin film characteristics impact on permeability/selectivity performance and fouling behavior of forward osmosis membrane.
Environ Sci Pollut Res Int. 2019 Jan;26(2):1181-1191. doi: 10.1007/s11356-017-0043-x. Epub 2017 Sep 5.

引用本文的文献

2
Beyond nothingness in the formation and functional relevance of voids in polymer films.
Nat Commun. 2024 Apr 11;15(1):2852. doi: 10.1038/s41467-024-46584-2.
4
Correlating the Role of Nanofillers with Active Layer Properties and Performance of Thin-Film Nanocomposite Membranes.
Desalination. 2023 Mar 15;550. doi: 10.1016/j.desal.2023.116370. Epub 2023 Jan 19.
7

本文引用的文献

1
Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review.
Adv Colloid Interface Sci. 2020 Aug;282:102204. doi: 10.1016/j.cis.2020.102204. Epub 2020 Jun 27.
2
Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing.
Environ Sci Technol. 2020 Jun 2;54(11):6978-6986. doi: 10.1021/acs.est.0c01427. Epub 2020 May 20.
3
Intrinsic Nanoscale Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure-Property Correlation.
Environ Sci Technol. 2020 Mar 17;54(6):3559-3569. doi: 10.1021/acs.est.9b05892. Epub 2020 Mar 5.
5
Unraveling the Morphology-Function Relationships of Polyamide Membranes Using Quantitative Electron Tomography.
ACS Appl Mater Interfaces. 2019 Feb 27;11(8):8517-8526. doi: 10.1021/acsami.8b20826. Epub 2019 Feb 14.
7
Electron tomography reveals details of the internal microstructure of desalination membranes.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):8694-8699. doi: 10.1073/pnas.1804708115. Epub 2018 Aug 13.
8
Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.
Water Res. 2014 Feb 1;49:444-52. doi: 10.1016/j.watres.2013.10.029. Epub 2013 Oct 20.
9
Kinetics of film formation by interfacial polycondensation.
Langmuir. 2005 Mar 1;21(5):1884-94. doi: 10.1021/la048085v.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验