Jin Hao, Zhang Yan, Cao Zhuwei, Liu Jian, Ye Sheng
Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China.
Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
Adv Mater. 2025 Aug;37(33):e2502977. doi: 10.1002/adma.202502977. Epub 2025 May 6.
The electrocatalytic hydrogen evolution reaction (HER) plays a pivotal role in electrochemical energy conversion and storage. However, traditional HER catalysts still face significant challenges, including limited activity, poor acid resistance, and high costs. To address these issues, a hollow core-shell structured 2H@1T-MoS-Sn nanoreactor is designed for acidic HER, where Sn single atoms are anchored on the shell of 2H@1T-MoS Mott-Schottky phase junction. The 2H@1T-MoS-Sn catalyst demonstrates exceptional HER performance, achieving an ultralow overpotential of 9 mV at 10 mA cm and a Tafel slope of 16.3 mV dec in acidic media-the best performance reported to date among MoS-based electrocatalysts. The enhanced performance is attributed to the internal electric field at the Mott-Schottky phase junction, which facilitates efficient electron transfer. Additionally, the Sn single atoms modulate the electronic structure of Mo atoms within the Sn-S-Mo motif, inducing a significant shift in the d-band center and thereby optimizing the dehydrogenation process. This work presents a novel electrocatalyst design strategy that simultaneously engineers interfacial charge transfer and surface catalysis, offering a promising approach for advancing energy conversion technologies.
电催化析氢反应(HER)在电化学能量转换和存储中起着关键作用。然而,传统的HER催化剂仍然面临重大挑战,包括活性有限、耐酸性差和成本高。为了解决这些问题,设计了一种用于酸性HER的中空核壳结构2H@1T-MoS-Sn纳米反应器,其中Sn单原子锚定在2H@1T-MoS莫特-肖特基相结的壳上。2H@1T-MoS-Sn催化剂表现出优异的HER性能,在10 mA cm下实现了9 mV的超低过电位,在酸性介质中的塔菲尔斜率为16.3 mV dec,这是迄今为止报道的基于MoS的电催化剂中最好的性能。性能的提高归因于莫特-肖特基相结处的内电场,它促进了有效的电子转移。此外,Sn单原子调节了Sn-S-Mo基序中Mo原子的电子结构,导致d带中心发生显著位移,从而优化了脱氢过程。这项工作提出了一种新颖的电催化剂设计策略,该策略同时设计界面电荷转移和表面催化,为推进能量转换技术提供了一种有前途的方法。