Suppr超能文献

Pt 在 MoS 上的相依赖性生长用于高效析氢。

Phase-dependent growth of Pt on MoS for highly efficient H evolution.

机构信息

Department of Chemistry, City University of Hong Kong, Hong Kong, China.

Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.

出版信息

Nature. 2023 Sep;621(7978):300-305. doi: 10.1038/s41586-023-06339-3. Epub 2023 Sep 13.

Abstract

Crystal phase is a key factor determining the properties, and hence functions, of two-dimensional transition-metal dichalcogenides (TMDs). The TMD materials, explored for diverse applications, commonly serve as templates for constructing nanomaterials and supported metal catalysts. However, how the TMD crystal phase affects the growth of the secondary material is poorly understood, although relevant, particularly for catalyst development. In the case of Pt nanoparticles on two-dimensional MoS nanosheets used as electrocatalysts for the hydrogen evolution reaction, only about two thirds of Pt nanoparticles were epitaxially grown on the MoS template composed of the metallic/semimetallic 1T/1T' phase but with thermodynamically stable and poorly conducting 2H phase mixed in. Here we report the production of MoS nanosheets with high phase purity and show that the 2H-phase templates facilitate the epitaxial growth of Pt nanoparticles, whereas the 1T' phase supports single-atomically dispersed Pt (s-Pt) atoms with Pt loading up to 10 wt%. We find that the Pt atoms in this s-Pt/1T'-MoS system occupy three distinct sites, with density functional theory calculations indicating for Pt atoms located atop of Mo atoms a hydrogen adsorption free energy of close to zero. This probably contributes to efficient electrocatalytic H evolution in acidic media, where we measure for s-Pt/1T'-MoS a mass activity of 85 ± 23 A [Formula: see text] at the overpotential of -50 mV and a mass-normalized exchange current density of 127 A [Formula: see text] and we see stable performance in an H-type cell and prototype proton exchange membrane electrolyser operated at room temperature. Although phase stability limitations prevent operation at high temperatures, we anticipate that 1T'-TMDs will also be effective supports for other catalysts targeting other important reactions.

摘要

晶体相是决定二维过渡金属二硫属化物(TMDs)性质和功能的关键因素。TMD 材料作为构建纳米材料和负载金属催化剂的模板,具有广泛的应用前景。然而,TMD 晶体相如何影响次生材料的生长尚不清楚,尽管这一点很重要,特别是对于催化剂的开发。以二维 MoS 纳米片中负载的 Pt 纳米颗粒作为析氢反应的电催化剂为例,只有大约三分之二的 Pt 纳米颗粒在由金属/半导体 1T/1T'相组成的 MoS 模板上外延生长,而混合的热稳定且导电性差的 2H 相则不参与外延生长。在这里,我们报告了高相纯度 MoS 纳米片的制备,并表明 2H 相模板有利于 Pt 纳米颗粒的外延生长,而 1T'相则支持负载量高达 10wt%的单原子分散 Pt(s-Pt)原子。我们发现,在这个 s-Pt/1T'-MoS 体系中,Pt 原子占据三个不同的位置,密度泛函理论计算表明,位于 Mo 原子顶部的 Pt 原子具有接近零的氢吸附自由能。这可能有助于在酸性介质中高效电催化析氢,在酸性介质中,我们测量 s-Pt/1T'-MoS 的质量活性为 -50 mV 过电势下 85±23 A [Formula: see text],质量归一化交换电流密度为 127 A [Formula: see text],并且在室温下运行的 H 型电池和质子交换膜电解槽原型中表现出稳定的性能。尽管相稳定性限制了其在高温下的运行,但我们预计 1T'-TMD 也将成为针对其他重要反应的催化剂的有效载体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验