Suppr超能文献

膜蛋白折叠途径中的新兴模式。

Emerging Patterns in Membrane Protein Folding Pathways.

作者信息

Kim Sang Ah, Kim Hyun Gyu, Wijesinghe W C Bhashini, Min Duyoung, Yoon Tae-Young

机构信息

School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea; email:

Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea; email:

出版信息

Annu Rev Biophys. 2025 May;54(1):141-162. doi: 10.1146/annurev-biophys-070524-100658.

Abstract

Studies of membrane protein folding have progressed from simple systems such as bacteriorhodopsin to complex structures such as ATP-binding cassette transporters and voltage-gated ion channels. Advances in techniques such as single-molecule force spectroscopy and in vivo force profiling now allow for the detailed examination of membrane protein folding pathways at amino acid resolutions. These proteins navigate rugged energy landscapes partly shaped by the absence of hydrophobic collapse and the viscous nature of the lipid bilayer, imposing biophysical limitations on folding speeds. Furthermore, many transmembrane (TM) helices display reduced hydrophobicity to support functional requirements, simultaneously increasing the energy barriers for membrane insertion, a manifestation of the evolutionary trade-off between functionality and foldability. These less hydrophobic TM helices typically insert and fold as helical hairpins, following the protein synthesis direction from the N terminus to the C terminus, with assistance from endoplasmic reticulum (ER) chaperones like the Sec61 translocon and the ER membrane protein complex. The folding pathways of multidomain membrane proteins are defined by allosteric networks that extend across various domains, where mutations and folding correctors affect seemingly distant domains. A common evolutionary strategy is likely to be domain specialization, where N-terminal domains enhance foldability and C-terminal domains enhance functionality. Thus, despite inherent biophysical constraints, evolution has finely tuned membrane protein sequences to optimize foldability, stability, and functionality.

摘要

膜蛋白折叠的研究已从诸如细菌视紫红质等简单系统发展到如ATP结合盒转运蛋白和电压门控离子通道等复杂结构。单分子力谱和体内力分析等技术的进步,现在使得能够在氨基酸分辨率下详细研究膜蛋白的折叠途径。这些蛋白质在崎岖的能量景观中导航,部分是由缺乏疏水塌缩和脂质双层的粘性性质所塑造,这对折叠速度施加了生物物理限制。此外,许多跨膜(TM)螺旋显示出降低的疏水性以支持功能需求,同时增加了膜插入的能量障碍,这是功能性和可折叠性之间进化权衡的一种表现。这些疏水性较低的TM螺旋通常以螺旋发夹的形式插入并折叠,沿着从N端到C端的蛋白质合成方向,在内质网(ER)伴侣如Sec61转运体和ER膜蛋白复合物的协助下进行。多结构域膜蛋白的折叠途径由跨越各个结构域的变构网络定义,其中突变和折叠校正剂会影响看似遥远的结构域。一种常见的进化策略可能是结构域特化,即N端结构域增强可折叠性,C端结构域增强功能性。因此,尽管存在固有的生物物理限制,但进化已经精细地调整了膜蛋白序列,以优化可折叠性、稳定性和功能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验