Suppr超能文献

细胞色素P450介导的福拉唑啉生物合成中环己烷环的形成。

Cytochrome P450 Mediated Cyclohexane Ring Formation in Forazoline Biosynthesis.

作者信息

Chen Xinru, Zhang Yujie, Li Shiqi, Liao Weiting, Tao Weixin, Deng Zixin, Bugni Tim S, Su Hao, Zhang Fan

机构信息

Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei, 430071, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202504925. doi: 10.1002/anie.202504925. Epub 2025 May 15.

Abstract

Forazoline A, produced by the marine actinomycete Actinomadura sp. WMMB-499, is a unique PK/NRP hybrid macrolactone with promising antifungal in vivo efficacy through a previously unreported mechanism. Although a PKS/NRPS gene cluster was identified as a candidate for forazoline production, the precise biosynthetic pathway and the functions of the tailoring enzymes remain unclear. In this work, the functions of three cytochrome P450 mono-oxygenases (FrazP1P2P3) were characterized. Notably, FrazP2 was found to mediate cyclohexane ring formation from an 1,3,6-triene precursor during forazoline A biosynthesis, as confirmed by genetic and biochemical analysis. To gain structural and mechanistic insight into the activity of FrazP2, the crystal structure of a FrazP2-substrate complex has been solved at 2.3 Å resolution. The molecular dynamics simulations and DFT calculations revealed an unprecedented enzyme-catalyzed oxidative cyclization reaction by FrazP2. These findings expand our understanding of the catalytic diversity of cytochrome P450s, contributing to the diversification of natural products and enabling the creation of unnatural derivatives with increased antifungal potency.

摘要

海洋放线菌马杜拉放线菌属(Actinomadura sp.)WMMB - 499产生的福唑啉A是一种独特的聚酮合酶/非核糖体肽合成酶(PK/NRP)杂合大环内酯,通过一种前所未有的机制在体内具有良好的抗真菌效果。尽管一个聚酮合酶/非核糖体肽合成酶基因簇被确定为福唑啉产生的候选基因簇,但精确的生物合成途径和修饰酶的功能仍不清楚。在这项工作中,对三种细胞色素P450单加氧酶(FrazP1、P2、P3)的功能进行了表征。值得注意的是,通过遗传和生化分析证实,在福唑啉A生物合成过程中,FrazP2介导了从1,3,6 - 三烯前体形成环己烷环。为了深入了解FrazP2活性的结构和机制,已以2.3 Å的分辨率解析了FrazP2 - 底物复合物的晶体结构。分子动力学模拟和密度泛函理论计算揭示了FrazP2前所未有的酶催化氧化环化反应。这些发现扩展了我们对细胞色素P450催化多样性的理解,有助于天然产物的多样化,并能够创造出具有更高抗真菌效力的非天然衍生物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验