Vangenechten Bram, De Coninck Barbara, Ceusters Johan
Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium.
KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium.
Front Plant Sci. 2025 Apr 22;16:1568423. doi: 10.3389/fpls.2025.1568423. eCollection 2025.
Abiotic stress is among the most critical factors limiting crop productivity worldwide and its importance is further exacerbated by climate change. In recent years, microalgal biostimulants have gained attention for their potential to enhance plant resilience towards abiotic stress. However, significant hurdles still persist, particularly regarding the unknown modes of action of microalgal biostimulants, which is a concern for stringent regulatory requirements and product reliability. The aim of this review is to improve the potential of microalgal biostimulants for abiotic stress mitigation in plants by addressing different key parameters shaping the efficacy of microalgal biostimulants, encompassing cultivation approaches, extraction techniques, and application methods. Furthermore, it also highlights how microalgal biostimulants modulate plant morphology, physiology and biochemistry under drought, salinity, and heat stress-three predominant stressors anticipated to intensify under climate change. Notably, these biostimulants consistently enhance drought stress tolerance by improving biomass accumulation, nutrient uptake, and water use efficiency through enhanced photosynthesis and stomatal regulation. These effects are largely driven by the accumulation of osmoprotectants and antioxidant compounds. In contrast, salt stress mitigation is highly species-dependent, with some microalgae enhancing stress tolerance through osmoprotectant and antioxidant accumulation, while others reduce these compounds, potentially lowering stress perception via unknown mechanisms. Despite the significance of the abiotic stress, heat stress mitigation by microalgal biostimulants remains an underexplored research area. Additionally, indirect applications of microalgae-ranging from biotechnological innovations to desalination-underscore the broader potential of these organisms in agricultural resilience. Collectively, this review identifies three key gaps in the existing literature-the diversity gap, the practical gap, and the research gap-while outlining promising avenues for future research in microalgal biostimulant development.
非生物胁迫是限制全球作物生产力的最关键因素之一,而气候变化进一步加剧了其重要性。近年来,微藻生物刺激素因其增强植物对非生物胁迫的抗性的潜力而受到关注。然而,重大障碍仍然存在,特别是关于微藻生物刺激素未知的作用模式,这是严格监管要求和产品可靠性所关注的问题。本综述的目的是通过探讨影响微藻生物刺激素功效的不同关键参数,包括培养方法、提取技术和应用方法,来提高微藻生物刺激素缓解植物非生物胁迫的潜力。此外,它还强调了微藻生物刺激素在干旱、盐度和热胁迫(预计在气候变化下会加剧的三种主要胁迫因素)下如何调节植物的形态、生理和生化。值得注意的是,这些生物刺激素通过增强光合作用和气孔调节来改善生物量积累、养分吸收和水分利用效率,从而持续提高对干旱胁迫的耐受性。这些效应在很大程度上是由渗透保护剂和抗氧化化合物的积累驱动的。相比之下,盐胁迫缓解高度依赖物种,一些微藻通过渗透保护剂和抗氧化剂的积累来增强胁迫耐受性,而另一些则减少这些化合物,可能通过未知机制降低胁迫感知。尽管非生物胁迫很重要,但微藻生物刺激素缓解热胁迫仍然是一个未充分探索的研究领域。此外,微藻的间接应用——从生物技术创新到海水淡化——凸显了这些生物在农业抗逆性方面更广泛的潜力。总体而言,本综述确定了现有文献中的三个关键差距——多样性差距、实践差距和研究差距——同时概述了微藻生物刺激素开发未来研究的有前景的途径。