微生物植物生物刺激素在非生物胁迫条件下根际中的分子通讯。
Molecular Communication of Microbial Plant Biostimulants in the Rhizosphere Under Abiotic Stress Conditions.
机构信息
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea.
出版信息
Int J Mol Sci. 2024 Nov 19;25(22):12424. doi: 10.3390/ijms252212424.
Microbial plant biostimulants offer a promising, sustainable solution for enhancing plant growth and resilience, particularly under abiotic stress conditions such as drought, salinity, extreme temperatures, and heavy metal toxicity. These biostimulants, including plant growth-promoting rhizobacteria, mycorrhizal fungi, and nitrogen-fixing bacteria, enhance plant tolerance through mechanisms such as phytohormone production, nutrient solubilization, osmotic adjustment, and antioxidant enzyme activation. Advances in genomics, metagenomics, transcriptomics, and proteomics have significantly expanded our understanding of plant-microbe molecular communication in the rhizosphere, revealing mechanisms underlying these interactions that promote stress resilience. However, challenges such as inconsistent field performance, knowledge gaps in stress-related molecular signaling, and regulatory hurdles continue to limit broader biostimulant adoption. Despite these challenges, microbial biostimulants hold significant potential for advancing agricultural sustainability, particularly amid climate change-induced stresses. Future studies and innovation, including Clustered Regularly Interspaced Short Palindromic Repeats and other molecular editing tools, should optimize biostimulant formulations and their application for diverse agro-ecological systems. This review aims to underscore current advances, challenges, and future directions in the field, advocating for a multidisciplinary approach to fully harness the potential of biostimulants in modern agriculture.
微生物植物生物刺激素为增强植物生长和抗逆性提供了有前景的可持续解决方案,特别是在非生物胁迫条件下,如干旱、盐度、极端温度和重金属毒性。这些生物刺激素包括植物生长促进根际细菌、菌根真菌和固氮细菌,通过植物激素产生、养分溶解、渗透调节和抗氧化酶激活等机制增强植物的耐受性。基因组学、宏基因组学、转录组学和蛋白质组学的进步极大地扩展了我们对根际中植物-微生物分子通讯的理解,揭示了促进抗逆性的这些相互作用的机制。然而,挑战依然存在,例如田间表现不一致、与胁迫相关的分子信号的知识空白以及监管障碍,这些都继续限制了生物刺激素的更广泛采用。尽管存在这些挑战,但微生物生物刺激素在推进农业可持续性方面具有重要潜力,特别是在气候变化引起的胁迫下。未来的研究和创新,包括簇状规律间隔短回文重复序列和其他分子编辑工具,应优化生物刺激素配方及其在不同农业生态系统中的应用。本综述旨在强调该领域的当前进展、挑战和未来方向,倡导采用多学科方法充分利用生物刺激素在现代农业中的潜力。