Suppr超能文献

基于高分辨率血管壁成像的放射组学分析用于精确预测颅内动脉瘤破裂风险:一种有前景的方法。

High-resolution vessel wall imaging-driven radiomic analysis for the precision prediction of intracranial aneurysm rupture risk: a promising approach.

作者信息

Yuan Wenqing, Jiang Shuangyan, Wang Zihang, Yan Chang, Jiang Yongxiang, Guo Dajing, Chen Ting

机构信息

Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Chongqing Medical University, Chongqing, China.

出版信息

Front Neurosci. 2025 Apr 22;19:1581373. doi: 10.3389/fnins.2025.1581373. eCollection 2025.

Abstract

OBJECTIVE

This study aimed to extract the radiomic features of intracranial aneurysm (IA) and parent artery (PA) walls from high-resolution vessel wall imaging (HR-VWI) images and construct and validate machine learning (ML) predictive models by comparing them with the radiomics score (Rad-score).

METHODS

In this study, 356 IAs from 306 patients were retrospectively analyzed at Yuzhong Center and randomly divided into training and test cohorts in an 8:2 ratio. Additionally, 66 IAs from 58 patients were used at Jiangnan Center to validate the predictive model. Radiomic features of the IA and PA walls were extracted from the contrast-enhanced HR-VWI images. Univariate and least absolute shrinkage and selection operator (LASSO) regression analyses were performed on the training cohort features to identify optimal rupture-associated features. The Rad-score model was constructed by calculating the total score derived from the weighted sum of optimal radiomic features, and three ML models were built using the XGBoost, LightGBM, and CART algorithms, and evaluated using both the test and external validation cohorts.

RESULTS

Eight optimal IA wall features and four PA wall features were identified. The Rad-score model demonstrated an area under the curve (AUC) of 0.858, 0.800, and 0.770 for the training, test, and external validation cohorts, respectively. Among the three ML models, the XGBoost model performed best across all cohorts, with AUC values of 0.983, 0.891, and 0.864, respectively. Compared to the Rad-score model, the XGBoost model exhibited superior AUC values ( < 0.05), better calibration curve Brier scores, and greater net clinical benefit.

CONCLUSION

The radiomic features extracted from HR-VWI images demonstrated robust predictive utility for IA rupture risk in both the Rad-score and ML models. The XGBoost-based ML model outperformed the Rad-score model in efficacy and performance, and proved to be a noninvasive, efficient, and accurate tool for identifying high-risk IA patients.

摘要

目的

本研究旨在从高分辨率血管壁成像(HR-VWI)图像中提取颅内动脉瘤(IA)和载瘤动脉(PA)壁的放射组学特征,并通过与放射组学评分(Rad-score)比较来构建和验证机器学习(ML)预测模型。

方法

本研究对来自渝中中心的306例患者的356个IA进行回顾性分析,并以8:2的比例随机分为训练组和测试组。此外,来自江南中心的58例患者的66个IA用于验证预测模型。从对比增强的HR-VWI图像中提取IA和PA壁的放射组学特征。对训练组特征进行单变量和最小绝对收缩和选择算子(LASSO)回归分析,以识别最佳破裂相关特征。通过计算从最佳放射组学特征的加权和得出的总分来构建Rad-score模型,并使用XGBoost、LightGBM和CART算法构建三个ML模型,并使用测试组和外部验证组进行评估。

结果

确定了8个最佳IA壁特征和4个PA壁特征。Rad-score模型在训练组、测试组和外部验证组中的曲线下面积(AUC)分别为0.858、0.800和0.770。在三个ML模型中,XGBoost模型在所有组中表现最佳,AUC值分别为0.983、0.891和0.864。与Rad-score模型相比,XGBoost模型表现出更高的AUC值(<0.05)、更好的校准曲线Brier评分和更大的净临床效益。

结论

从HR-VWI图像中提取的放射组学特征在Rad-score模型和ML模型中均显示出对IA破裂风险的强大预测效用。基于XGBoost的ML模型在疗效和性能方面优于Rad-score模型,被证明是识别高危IA患者的一种无创、高效且准确的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30e7/12052944/ef4b140fbdca/fnins-19-1581373-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验