Suppr超能文献

用于识别脓毒症病程关键活动的比较过程挖掘

Comparative Process Mining for Identifying the Critical Activities in Sepsis Trajectories.

作者信息

Mohammadi Mohsen

机构信息

Computer Engineering Department Esfarayen University of Technology Esfarayen Iran.

出版信息

Healthc Technol Lett. 2025 May 5;12(1):e70010. doi: 10.1049/htl2.70010. eCollection 2025 Jan-Dec.

Abstract

Sepsis, a life-threatening condition with high mortality and readmission rates, demands precise and timely management to improve patient outcomes. Despite advancements, identifying the critical activities within sepsis treatment pathways remains a challenge, limiting the effectiveness of interventions. This study addresses this issue by utilising comparative process mining techniques to analyse sepsis trajectories, focusing on key performance metrics-sojourn time, arrival rate and finish rate-across distinct patient clusters. The analysis is based on real-life event logs from a hospital's sepsis cases, using K-means clustering to segment patients by age, severity and key clinical indicators. The study reveals critical activities such as 'Return ER', 'Admission IC', and 'Release C', which consistently exhibit high sojourn times and influence patient outcomes significantly. These activities emerge as bottlenecks in the patient care process, particularly in cases of severe sepsis, where delays can lead to increased complications and mortality. By identifying these critical points, the study provides actionable insights for healthcare providers to optimize resource allocation, reduce delays and enhance the overall efficiency of sepsis management. The findings underscore the importance of targeted interventions in these key areas, offering a path toward improved clinical outcomes and reduced sepsis-related mortality and readmission rates. This research contributes to the growing field of process mining in healthcare, highlighting its potential to transform complex clinical pathways into more efficient and effective treatment processes.

摘要

脓毒症是一种危及生命的疾病,死亡率和再入院率很高,需要精确且及时的管理以改善患者预后。尽管取得了进展,但确定脓毒症治疗路径中的关键活动仍然是一项挑战,这限制了干预措施的有效性。本研究通过运用比较过程挖掘技术来分析脓毒症轨迹,重点关注不同患者群体的关键绩效指标——住院时间、到达率和完成率,以解决这一问题。该分析基于一家医院脓毒症病例的真实事件日志,使用K均值聚类方法按年龄、严重程度和关键临床指标对患者进行分组。研究揭示了诸如“返回急诊室”“入住重症监护室”和“出院”等关键活动,这些活动始终呈现出较长的住院时间,并对患者预后有显著影响。这些活动成为患者护理过程中的瓶颈,尤其是在严重脓毒症病例中,延误可能导致并发症增加和死亡率上升。通过识别这些关键点,该研究为医疗保健提供者提供了可采取行动的见解,以优化资源分配、减少延误并提高脓毒症管理的整体效率。研究结果强调了在这些关键领域进行有针对性干预的重要性,为改善临床结果以及降低脓毒症相关的死亡率和再入院率提供了一条途径。这项研究为医疗保健领域不断发展的过程挖掘做出了贡献,突出了其将复杂临床路径转变为更高效治疗过程的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f34/12051096/c01fad9ac70c/HTL2-12-e70010-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验