Zhu Ante, Michael Eric S, Li Hua, Sprenger Tim, Hua Yihe, Lee Seung-Kyun, Yeo Desmond Teck Beng, McNab Jennifer A, Hennel Franciszek, Fieremans Els, Wu Dan, Foo Thomas K F, Novikov Dmitry S
Technology and Innovation Center, GE HealthCare, Niskayuna, New York, USA.
Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
Magn Reson Med. 2025 Sep;94(3):913-936. doi: 10.1002/mrm.30510. Epub 2025 May 7.
Oscillating gradient spin echo (OGSE) diffusion MRI (dMRI) can probe the diffusive dynamics on short time scales ≲10 ms, which translates into the sensitivity to tissue microstructure at the short length scales m. OGSE-based tissue microstructure imaging techniques able to characterize the cell diameter and cellular density have been established in pre-clinical studies. The unique image contrast of OGSE dMRI has been shown to differentiate tumor types and malignancies, enable early diagnosis of treatment effectiveness, and reveal different pathophysiology of lesions in stroke and neurological diseases. Recent innovations in high-performance gradient human MRI systems provide an opportunity to translate OGSE research findings in pre-clinical studies to human research and the clinic. The implementation of OGSE dMRI in human studies has the promise to advance our understanding of human brain microstructure and improve patient care. Compared to the clinical standard (pulsed gradient spin echo), engineering OGSE diffusion encoding for human imaging is more challenging. This review summarizes the impact of hardware and human biophysical safety considerations on the waveform design, imaging parameter space, and image quality of OGSE dMRI. Here we discuss the effects of the gradient amplitude, slew rate, peripheral nerve stimulation, cardiac stimulation, gradient driver, acoustic noise and mechanical vibration, eddy currents, gradient nonlinearity, concomitant gradient, motion and flow, and signal-to-noise ratio. We believe that targeted engineering for safe, high-quality, and reproducible imaging will enable the translation of OGSE dMRI techniques into the clinic.
振荡梯度自旋回波(OGSE)扩散磁共振成像(dMRI)能够在小于10毫秒的短时间尺度上探测扩散动力学,这转化为对短长度尺度(约为亚毫米级)组织微观结构的敏感性。基于OGSE的能够表征细胞直径和细胞密度的组织微观结构成像技术已在临床前研究中得以确立。OGSE dMRI独特的图像对比度已被证明可区分肿瘤类型和恶性程度,实现对治疗效果的早期诊断,并揭示中风和神经疾病中病变的不同病理生理学特征。高性能梯度人体MRI系统的最新创新为将临床前研究中的OGSE研究成果转化为人体研究和临床应用提供了契机。在人体研究中实施OGSE dMRI有望增进我们对人脑微观结构了解并改善患者护理。与临床标准(脉冲梯度自旋回波)相比,设计用于人体成像的OGSE扩散编码更具挑战性。本综述总结了硬件和人体生物物理安全考量对OGSE dMRI的波形设计、成像参数空间和图像质量的影响。在此我们讨论梯度幅度、 slew率、外周神经刺激、心脏刺激、梯度驱动器、声学噪声和机械振动、涡流、梯度非线性、伴随梯度、运动和流动以及信噪比的影响。我们相信,针对安全、高质量和可重复成像的定向工程将使OGSE dMRI技术能够转化应用于临床。
Magn Reson Med. 2025-9
J Magn Reson Imaging. 2025-7
IEEE J Transl Eng Health Med. 2025-4-10
bioRxiv. 2025-6-10
Magn Reson Med. 2025-11
2025-1
Magn Reson Med. 2022-5
Magn Reson Med. 2024-11
Magn Reson Med. 2024-10
Magn Reson Med. 2024-6
Front Neurosci. 2023-12-7