Zhang Yufei, Gupta Adit, Lu Qiuchun, Lv Jian, Chen Shaohua, Hu Tan, Yu Jian, Mandler Daniel, Lee Pooi See
School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore.
Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore.
Adv Mater. 2025 Jul;37(26):e2503297. doi: 10.1002/adma.202503297. Epub 2025 May 7.
Ionic actuators based on composite electrodes consisting of nanomaterials and conducting polymer typically offer the advantages of low-voltage operation and high stability, however, electrode preparation using conventional mixing suffers from issues of ineffective dispersion of nanomaterials, greatly diminishing their synergistic effects. Here, the ternary electrode system based on SWCNTs/PEDOT: PSS/ionic liquid using the two-step dispersion process is optimized, achieving a uniformly coated core-shell structure with high conductivity (≈392.4 S cm). The ions migration process is analyzed according to the core-shell model, further optimization of the ternary electrode and device structure enables the actuator to realize the peak-to-peak strain per volt reaching 1.3% V and normalized blocking force of 0.15 MPa V (≈89.2 times its own weight), with stable performance maintained over 1 million cycles. Therefore, the actuator can be utilized for the assembly of multi-clawed grippers to grasp precision components or larger objects. Multiple connected actuators fulfill a complex deformation, indicating promising applications in smart grippers, bioinspired robotics, and human-machine interaction.
基于由纳米材料和导电聚合物组成的复合电极的离子致动器通常具有低电压运行和高稳定性的优点,然而,使用传统混合方法制备电极存在纳米材料分散无效的问题,大大降低了它们的协同效应。在此,基于单壁碳纳米管/聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐/离子液体的三元电极系统采用两步分散工艺进行了优化,实现了具有高电导率(约392.4 S/cm)的均匀包覆核壳结构。根据核壳模型分析了离子迁移过程,对三元电极和器件结构的进一步优化使致动器能够实现每伏峰峰值应变达到1.3%V,归一化阻塞力为0.15 MPa/V(约为其自身重量的89.2倍),并在超过100万次循环中保持稳定性能。因此,该致动器可用于组装多爪夹具以抓取精密部件或更大的物体。多个相连的致动器可实现复杂变形,表明在智能夹具、仿生机器人和人机交互方面具有广阔的应用前景。