文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过成分微调及硫化锌包覆增强AgGeS量子点的近红外光致发光用于体内生物成像

Enhancing Near-Infrared Photoluminescence of AgGeS Quantum Dots Through Compositional Fine-Tuning and ZnS Coating for In Vivo Bioimaging.

作者信息

Rismaningsih Nurmanita, Kubo Junya, Soto Masayuki, Akiyoshi Kazutaka, Kameyama Tatsuya, Yamamoto Takahisa, Yukawa Hiroshi, Baba Yoshinobu, Torimoto Tsukasa

机构信息

Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.

Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.

出版信息

Small. 2025 Aug;21(32):e2411142. doi: 10.1002/smll.202411142. Epub 2025 May 7.


DOI:10.1002/smll.202411142
PMID:40331510
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12366261/
Abstract

Quantum dots (QDs) composed of a group I-IV-VI semiconductor, AgGeS, have been intensively investigated for constructing efficient energy conversion systems. However, their potential for photoluminescence (PL)-based applications has remained unexplored. Herein, the first successful preparation of AgGeS QDs exhibiting near-infrared (NIR) PL is reported. These AgGeS QDs with an average diameter of 4.2-4.6 nm has an almost constant energy gap at 1.48-1.45 eV, even when the Ge/(Ag+Ge) precursor ratio is varied from 0.05 to 0.90. A significant PL peak is observed at 920 nm, the intensity being enlarged with an increase in the Ge/(Ag+Ge) ratio. The use of AgGeS QDs prepared with Ge/(Ag+Ge) = 0.82 in the precursors result in a PL quantum yield (QY) of 11%, which is further enhanced to 40% through surface coating with a ZnS shell of 1.0 nm in thickness, with the PL peak wavelength being slightly blue-shifted to 900 nm. Following surface modification with 3-mercaptopropionic acid for homogeneous dispersion in aqueous solutions, the AgGeS@ZnS QDs are utilized as an NIR PL probe for in vivo bioimaging. PL signals are clearly detected from depths of at least 15 mm beneath the back skin of a mouse, demonstrating their deep-tissue imaging capability.

摘要

由 I-IV-VI 族半导体 AgGeS 组成的量子点(QDs)已被深入研究用于构建高效的能量转换系统。然而,它们在基于光致发光(PL)的应用方面的潜力尚未得到探索。在此,报道了首次成功制备出表现出近红外(NIR)PL 的 AgGeS 量子点。这些平均直径为 4.2 - 4.6 纳米的 AgGeS 量子点,即使 Ge/(Ag + Ge) 前驱体比例从 0.05 变化到 0.90,其能隙也几乎恒定在 1.48 - 1.45 电子伏特。在 920 纳米处观察到一个显著的 PL 峰,其强度随着 Ge/(Ag + Ge) 比例的增加而增大。使用前驱体中 Ge/(Ag + Ge) = 0.82 制备的 AgGeS 量子点,其 PL 量子产率(QY)为 11%,通过用厚度为 1.0 纳米的 ZnS 壳层进行表面包覆,PL 量子产率进一步提高到 40%,PL 峰波长略微蓝移至 900 纳米。在用 3 - 巯基丙酸进行表面改性以在水溶液中均匀分散后,AgGeS@ZnS 量子点被用作体内生物成像的近红外 PL 探针。从小鼠背部皮肤下方至少 15 毫米深处清晰检测到 PL 信号,证明了它们的深层组织成像能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/c140e0a751bf/SMLL-21-2411142-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/5969d496ff49/SMLL-21-2411142-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/520a9268a8ca/SMLL-21-2411142-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/80dd763e1708/SMLL-21-2411142-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/3eb6897e2467/SMLL-21-2411142-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/f1496da7a72e/SMLL-21-2411142-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/d21754bdda6b/SMLL-21-2411142-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/d3a01a7338ba/SMLL-21-2411142-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/a15300672b26/SMLL-21-2411142-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/37505f268973/SMLL-21-2411142-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/d347427800ff/SMLL-21-2411142-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/c140e0a751bf/SMLL-21-2411142-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/5969d496ff49/SMLL-21-2411142-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/520a9268a8ca/SMLL-21-2411142-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/80dd763e1708/SMLL-21-2411142-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/3eb6897e2467/SMLL-21-2411142-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/f1496da7a72e/SMLL-21-2411142-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/d21754bdda6b/SMLL-21-2411142-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/d3a01a7338ba/SMLL-21-2411142-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/a15300672b26/SMLL-21-2411142-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/37505f268973/SMLL-21-2411142-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/d347427800ff/SMLL-21-2411142-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/868b/12366261/c140e0a751bf/SMLL-21-2411142-g003.jpg

相似文献

[1]
Enhancing Near-Infrared Photoluminescence of AgGeS Quantum Dots Through Compositional Fine-Tuning and ZnS Coating for In Vivo Bioimaging.

Small. 2025-8

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Isoreticular metal-organic framework-3 as a carrier of quantum dots for fluorescent immunolabeling in ultrasensitive lateral flow immunoassay of interleukin-6.

Anal Bioanal Chem. 2025-9

[4]
Aqueous Synthesis of DNA-Functionalized Near-Infrared AgInS/ZnS Core/Shell Quantum Dots.

ACS Appl Mater Interfaces. 2020-9-30

[5]
Photodynamic-Driven Growth of Aqueous CdSe/ZnSe/ZnS//ZnS Quantum Dots for Inflammatory Factors Multiplexed Detection via a Ratiometric-Fluorescence Immunosensor.

Inorg Chem. 2025-9-8

[6]
Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging.

Mater Sci Eng C Mater Biol Appl. 2020-6

[7]
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.

JBJS Essent Surg Tech. 2025-8-15

[8]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[9]
Functionalized CdS-ZnS Quantum Dots With Thiolate Group Capping Agents and Their Application as Fluorescence Probe for Measurement of Europium Ion.

Luminescence. 2025-8

[10]
Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.

Inorg Chem. 2009-10-19

本文引用的文献

[1]
New Insights in Luminescence and Quenching Mechanisms of AgS Nanocrystals through Temperature-Dependent Spectroscopy.

J Phys Chem Lett. 2024-8-22

[2]
Type-I CdSe@CdS@ZnS Heterostructured Nanocrystals with Long Fluorescence Lifetime.

Materials (Basel). 2023-11-1

[3]
Type-I CdS/ZnS Core/Shell Quantum Dot-Gold Heterostructural Nanocrystals for Enhanced Photocatalytic Hydrogen Generation.

J Am Chem Soc. 2023-10-11

[4]
Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity.

Adv Drug Deliv Rev. 2023-6

[5]
Microenvironmental Impact on InP/ZnS-Based Quantum Dots in In Vitro Models and in Living Cells: Spectrally- and Time-Resolved Luminescence Analysis.

Int J Mol Sci. 2023-1-31

[6]
Multifunctional Magnetic CuS/GdO Nanoparticles for Fluorescence/Magnetic Resonance Bimodal Imaging-Guided Photothermal-Intensified Chemodynamic Synergetic Therapy of Targeted Tumors.

ACS Appl Mater Interfaces. 2022-8-3

[7]
AgSnS: a new IR solar absorber material with a near optimal bandgap.

RSC Adv. 2018-11-26

[8]
Boosting the Near-Infrared Emission of AgS Nanoparticles by a Controllable Surface Treatment for Bioimaging Applications.

ACS Appl Mater Interfaces. 2022-2-2

[9]
Colloidal Alloyed Quantum Dots with Enhanced Photoluminescence Quantum Yield in the NIR-II Window.

J Am Chem Soc. 2021-2-17

[10]
Surface passivation extends single and biexciton lifetimes of InP quantum dots.

Chem Sci. 2020-5-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索