Wang Sen, Zhang Yu, Yuan Wei-Cheng, Qi Can-Yang, Zhang Hua-Xing, Wang Tian-Qi, Liu Hui-Jie, Li Hai-Shuang, Tian Yan-Ming, Wang Sheng, Miao Sui-Bing, Zhang Li-Ping, Guo Hui, Zhang Xiang-Jian, Zhang Yi, Ma Huijie, Guan Yue
Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.
Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
Basic Res Cardiol. 2025 May 7. doi: 10.1007/s00395-025-01113-0.
Our prior research demonstrated that chronic intermittent hypobaric hypoxia (CIHH) pretreatment confers cardioprotection against ischemia/reperfusion (I/R) injury in rats. However, the precise mechanisms underlying CIHH's cardioprotective effects remain insufficiently understood. This study aims to elucidate the upstream signaling pathways and dynamic regulation of BK channels in mediating CIHH-induced cardioprotection through coronary artery vasodilation in rats. Male Sprague-Dawley rats, matched by age and body weight, were assigned to control (Con) and CIHH groups. The CIHH group underwent 35 days of hypobaric hypoxia exposure simulating an altitude of 4000 m, for 5 h daily. Hearts were isolated, perfused using the Langendorff system, and subjected to 30 min of ischemia, followed by 60 or 120 min of reperfusion. Compared to the Con group, CIHH significantly improved left ventricular function recovery, reduced infarct size, and increased coronary flow (CF). Microvessel recording, co-immunoprecipitation, and whole-cell patch clamp techniques demonstrated that CIHH augmented CF by promoting coronary vasodilation, attributed to the inhibition of muscle RING-finger protein-1 (MuRF1)-mediated degradation of the BK-β subunit. Moreover, CIHH inhibited IKKα-induced phosphorylation and ubiquitin-mediated degradation of IκBα, thereby enhancing its cytoplasmic binding to NF-κB p65 in coronary smooth muscle cells. This process attenuated NF-κB p65 nuclear translocation and the subsequent inflammation-induced expression of MuRF1. The observed increase in coronary vasodilation, driven by the suppression of NF-κB/MuRF1-mediated BK-β degradation, contributes to enhanced CF and cardioprotection against I/R injury following CIHH.
我们先前的研究表明,慢性间歇性低压缺氧(CIHH)预处理可赋予大鼠心脏对缺血/再灌注(I/R)损伤的保护作用。然而,CIHH心脏保护作用的确切机制仍未得到充分了解。本研究旨在阐明BK通道在介导CIHH通过大鼠冠状动脉血管舒张诱导心脏保护中的上游信号通路和动态调节。将年龄和体重匹配的雄性Sprague-Dawley大鼠分为对照组(Con)和CIHH组。CIHH组进行35天的低压缺氧暴露,模拟海拔4000米,每天5小时。分离心脏,使用Langendorff系统灌注,并进行30分钟的缺血,随后进行60或120分钟的再灌注。与Con组相比,CIHH显著改善了左心室功能恢复,减小了梗死面积,并增加了冠状动脉血流量(CF)。微血管记录、免疫共沉淀和全细胞膜片钳技术表明,CIHH通过促进冠状动脉血管舒张增加了CF,这归因于抑制了肌肉环指蛋白-1(MuRF1)介导的BK-β亚基降解。此外,CIHH抑制了IKKα诱导的IκBα磷酸化和泛素介导的降解,从而增强了其在冠状动脉平滑肌细胞中与NF-κB p65的细胞质结合。这一过程减弱了NF-κB p65的核转位以及随后炎症诱导的MuRF1表达。观察到的冠状动脉血管舒张增加,由NF-κB/MuRF1介导的BK-β降解抑制驱动,有助于增强CF以及对CIHH后I/R损伤的心脏保护作用。
Basic Res Cardiol. 2023-11-13
Basic Res Cardiol. 2022-1-13
J Exp Clin Cancer Res. 2021-5-7
Cardiol Res Pract. 2021-3-16
Arterioscler Thromb Vasc Biol. 2021-5-5