Suppr超能文献

基于深度学习的肝癌中多倍体巨癌细胞和有丝分裂象的预后评估

Deep learning-based prognostic assessment of polyploid giant cancer cells and mitotic figures in liver cancer.

作者信息

Yang Jingying, Chen Cuimin, He Qiming, Li Jiayi, Li Houqiang, Peng Jing, Cheng Junru, Li Meihui, Zhou Xiaozhuan, He Yonghong, Guan Tian, Li Xi, Jiang Danling

机构信息

Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.

出版信息

Med Biol Eng Comput. 2025 May 7. doi: 10.1007/s11517-025-03360-8.

Abstract

Primary liver cancer is among the most lethal malignancies, with cell-level structural features such as polyploid giant cancer cells and mitotic figures strongly associated with poor patient prognosis. However, the quantification of these features is hindered by a shortage of pathologists, high workloads, and subjective discrepancies. To address these challenges, we leverage deep learning algorithms to enable the rapid detection of cell-level features, combining this capability with survival analysis to establish a novel, practical prognostic risk assessment system for liver cancer diagnosis and treatment. In collaboration with Peking University Shenzhen Hospital, we collected 172 liver cancer cases, comprising 340 pathology images, to construct the HCCP&M dataset. Our full-process calculation system integrates cell-level feature detection and survival analysis. During the detection phase, the CellFDet framework achieves F1 scores of 0.814, 0.819, and 0.935 for detecting polyploid giant cancer cells, mitotic figures, and general cells, respectively. In the survival analysis phase, patients were stratified into high-risk and low-risk groups based on the polyploid giant cancer cell index (P < 0.0001) and the mitotic index (P = 0.0025), with both indices demonstrating significant survival differences. Correlation analysis further confirmed these features as independent prognostic indicators for liver cancer. Our proposed system not only enables accurate detection of cell-level structural features but also provides reliable survival predictions, offering a valuable tool for improving the prognosis and treatment planning for liver cancer patients.

摘要

原发性肝癌是最致命的恶性肿瘤之一,其细胞水平的结构特征,如多倍体巨癌细胞和有丝分裂象,与患者预后不良密切相关。然而,这些特征的量化受到病理学家短缺、工作量大以及主观差异的阻碍。为应对这些挑战,我们利用深度学习算法实现细胞水平特征的快速检测,并将此能力与生存分析相结合,建立了一种用于肝癌诊断和治疗的新型实用预后风险评估系统。我们与北京大学深圳医院合作,收集了172例肝癌病例,包括340张病理图像,构建了HCCP&M数据集。我们的全过程计算系统集成了细胞水平特征检测和生存分析。在检测阶段,CellFDet框架检测多倍体巨癌细胞、有丝分裂象和普通细胞的F1分数分别为0.814、0.819和0.935。在生存分析阶段,根据多倍体巨癌细胞指数(P < 0.0001)和有丝分裂指数(P = 0.0025)将患者分为高风险和低风险组,这两个指数均显示出显著的生存差异。相关性分析进一步证实这些特征是肝癌的独立预后指标。我们提出的系统不仅能够准确检测细胞水平的结构特征,还能提供可靠的生存预测,为改善肝癌患者的预后和治疗规划提供了有价值的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验