Suppr超能文献

利用静电力:蜜蜂作为颗粒物检测生物指示物的综述

Harnessing Electrostatic Forces: A Review of Bees as Bioindicators for Particulate Matter Detection.

作者信息

Meacci Simone, Corsi Lorenzo, Santecchia Eleonora, Ruschioni Sara

机构信息

Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.

Department of Industrial Engineering and Mathematical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.

出版信息

Insects. 2025 Apr 1;16(4):373. doi: 10.3390/insects16040373.

Abstract

Bees (Hymenoptera, Anthophila) are widely recognized for their essential ecological roles, including pollination and biodiversity maintenance. Recently, their ability to collect environmental particulate matter through electrostatic forces has been explored for biomonitoring purposes. This review integrates knowledge on electrostatic pollen adhesion with emerging insights into particulate matter adhesion to bees, emphasizing their potential as bioindicators. The mechanisms of electrostatic adhesion, influenced by factors such as the physicochemical properties of particulate matter and bee morphology, are discussed in detail. Additionally, the study evaluates the adhesion efficiency of pollutants, including heavy metals, microplastics, nanoplastics, pathogens, pesticides, radionuclides, and volatile organic compounds. This multidisciplinary approach underscores the role of bees in advancing environmental monitoring methodologies and offers innovative tools for assessing ecosystem health while addressing the drivers of bee decline.

摘要

蜜蜂(膜翅目,Anthophila)因其在授粉和生物多样性维持等重要生态作用而广为人知。最近,人们探索了它们通过静电力收集环境颗粒物的能力,用于生物监测目的。本综述整合了关于静电花粉粘附的知识以及对颗粒物粘附于蜜蜂的新见解,强调了它们作为生物指示物的潜力。详细讨论了受颗粒物物理化学性质和蜜蜂形态等因素影响的静电粘附机制。此外,该研究评估了包括重金属、微塑料、纳米塑料、病原体、农药、放射性核素和挥发性有机化合物在内的污染物的粘附效率。这种多学科方法强调了蜜蜂在推进环境监测方法方面的作用,并为评估生态系统健康提供了创新工具,同时解决蜜蜂数量下降的驱动因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67c5/12027818/cc3686e7132e/insects-16-00373-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验