Chemistry and Physics Department, Agrifood Campus of International Excellence (ceiA3), University of Almeria, 04120, Almería, Spain.
Alveus AB Consultancy, Oisterwijk, the Netherlands.
Environ Pollut. 2024 Jun 1;350:124046. doi: 10.1016/j.envpol.2024.124046. Epub 2024 Apr 25.
Recent research has highlighted the potential of honeybees and bee products as biological samplers for monitoring xenobiotic pollutants. However, the effectiveness of these biological samplers in tracking microplastics (MPs) has not yet been explored. This study evaluates several methods of sampling MPs, using honeybees, pollen, and a novel in-hive passive sampler named the APITrap. The collected samples were characterized using a stereomicroscopy to count and categorise MPs by morphology, colour, and type. To chemical identification, a micro-Fourier transform-infrared (FTIR) spectroscopy was employed to determine the polymer types. The study was conducted across four consecutive surveillance programmes, in five different apiaries in Denmark. Our findings indicated that APITrap demonstrated better reproducibility, with a lower variation in results of 39%, compared to 111% for honeybee samples and 97% for pollen samples. Furthermore, the use of APITrap has no negative impact on bees and can be easily applied in successive samplings. The average number of MPs detected in the four monitoring studies ranged from 39 to 67 in the APITrap, 6 to 9 in honeybee samples, and 6 to 11 in pollen samples. Fibres were the most frequently found, accounting for an average of 91% of the total MPs detected in the APITrap, and similar values for fragments (5%) and films (4%). The MPs were predominantly coloured black, blue, green and red. Spectroscopy analysis confirmed the presence of up to five different synthetic polymers. Polyethylene terephthalate (PET) was the most common in case of fibres and similarly to polypropylene (PP), polyethylene (PE), polyacrylonitrile (PAN) and polyamide (PA) in non fibrous MPs. This study, based on citizen science and supported by beekeepers, highlights the potential of MPs to accumulate in beehives. It also shows that the APITrap provides a highly reliable and comprehensive approach for sampling in large-scale monitoring studies.
最近的研究强调了蜜蜂和蜂产品作为监测外来污染物的生物采样器的潜力。然而,这些生物采样器在追踪微塑料(MPs)方面的效果尚未得到探索。本研究评估了几种使用蜜蜂、花粉和一种名为 APITrap 的新型蜂巢内被动采样器采集 MPs 的方法。使用立体显微镜对采集到的样本进行特征描述,根据形态、颜色和类型对 MPs 进行计数和分类。为了进行化学鉴定,采用微傅里叶变换-红外(FTIR)光谱法确定聚合物类型。该研究在丹麦的五个不同养蜂场进行了四个连续的监测计划。我们的研究结果表明,APITrap 的重现性更好,结果的变异系数为 39%,而蜜蜂样本的变异系数为 111%,花粉样本的变异系数为 97%。此外,APITrap 的使用对蜜蜂没有负面影响,可以在连续采样中轻松应用。在四个监测研究中,APITrap 中检测到的 MPs 平均数量为 39 至 67 个,蜜蜂样本中为 6 至 9 个,花粉样本中为 6 至 11 个。纤维是最常见的,占 APITrap 中检测到的总 MPs 的平均 91%,碎片(5%)和薄膜(4%)的比例相似。 MPs 主要呈黑色、蓝色、绿色和红色。光谱分析证实了多达五种不同合成聚合物的存在。在纤维中,最常见的是聚对苯二甲酸乙二醇酯(PET),而在非纤维 MPs 中,类似的是聚丙烯(PP)、聚乙烯(PE)、聚丙烯腈(PAN)和聚酰胺(PA)。本研究基于公民科学,得到养蜂人的支持,强调了 MPs 在蜂箱中积累的潜力。它还表明,APITrap 为大规模监测研究中的采样提供了一种高度可靠和全面的方法。