Tian Xiaoxi, Lai Fanian, Ying Yu
School of Electrical and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
Materials (Basel). 2025 Apr 8;18(8):1697. doi: 10.3390/ma18081697.
Magnetic fluids (MF), composed of ferromagnetic nanoparticles, surfactants, and a carrier liquid, exhibit tunable physical properties under external magnetic fields due to the formation of chain-like nanoparticle structures. Using dissipative particle dynamics (DPD), we simulate the structural evolution of these fluids and establish a computational model incorporating magnetic nanoparticles and solvent particles. Our simulations confirm qualitative agreement with the literature results, validating the chosen time integration methods. Through radial distribution function analysis, we further demonstrate how the mass of solvent molecules and magnetic interaction strength govern the fluid's microstructure. This work provides insights into the design of magnetic fluids for applications such as targeted drug delivery, adaptive dampers, and advanced magneto-rheological devices.
磁性流体(MF)由铁磁纳米颗粒、表面活性剂和载液组成,由于形成了链状纳米颗粒结构,在外部磁场作用下呈现出可调节的物理性质。我们使用耗散粒子动力学(DPD)模拟这些流体的结构演变,并建立了一个包含磁性纳米颗粒和溶剂颗粒的计算模型。我们的模拟结果与文献结果在定性上一致,验证了所选择的时间积分方法。通过径向分布函数分析,我们进一步证明了溶剂分子的质量和磁相互作用强度如何控制流体的微观结构。这项工作为设计用于靶向药物递送、自适应阻尼器和先进磁流变装置等应用的磁性流体提供了见解。