Suppr超能文献

横向旋转场和外加流体流动条件下低场磁共振成像中磁性纳米颗粒行为的模拟

Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow.

作者信息

Cantillon-Murphy P, Wald L L, Adalsteinsson E, Zahn M

机构信息

Department of Gastroenterology, Brigham and Women's Hospital, Boston, MA.

出版信息

J Magn Magn Mater. 2010 Sep;322(17):2607-2617. doi: 10.1016/j.jmmm.2010.03.029.

Abstract

In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4°C and 7°C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B(0). Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B(0). Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002 to 0.01 solid volume fraction) and nanoparticle radii (1 to 10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful The goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B(0) field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the transverse rotating magnetic field in the presence of B(0) are investigated to demonstrate the effect of Ω, the rotating field frequency, and the magnetic field amplitude on the fluid suspension magnetization. The transverse magnetization due to the rotating transverse field shows strong dependence on the characteristic time constant of the fluid suspension, τ. The analysis shows that as the rotating field frequency increases so that Ωτ approaches unity, the transverse fluid magnetization vector is significantly non-aligned with the applied rotating field and the magnetization's magnitude is a strong function of the field frequency. In this frequency range, the fluid's transverse magnetization is controlled by the applied field which is determined by the operator. The phenomenon, which is due to the physical rotation of the magnetic nanoparticles in the suspension, is demonstrated analytically when the nanoparticles are present in high concentrations (1 to 3% solid volume fractions) more typical of hyperthermia rather than in clinical imaging applications, and in low MRI field strengths (such as open MRI systems), where the magnetic nanoparticles are not magnetically saturated. The effect of imposed Poiseuille flow in a planar channel geometry and changing nanoparticle concentration is examined. The work represents the first known attempt to analyze the dynamic behavior of magnetic nanoparticles in the MRI environment including the effects of the magnetic nanoparticle spin-velocity. It is shown that the magnitude of the transverse magnetization is a strong function of the rotating transverse field frequency. Interactive fluid magnetization effects are predicted due to non-uniform fluid magnetization in planar Poiseuille flow with high nanoparticle concentrations.

摘要

在交变正弦或旋转磁场存在的情况下,磁性纳米颗粒会使其磁矩与外加磁场重新对齐。这种重新对齐由纳米颗粒的时间常数τ来表征。随着磁场频率增加,对于给定频率Ω(单位为rad/s),纳米颗粒的磁矩会以恒定角度滞后于外加磁场。与这种未对齐相关的是功率耗散,它会使磁性流体的整体温度升高,这已被用作磁性纳米颗粒热疗的一种方法,特别适用于低灌注组织(如乳腺)中的癌症,在体内环境温度之上4°C至7°C的温度升高会导致肿瘤热疗。这项工作研究了在以大直流磁场B(0)为特征的MRI环境中磁性流体温度的升高情况。使用理论分析和模拟来预测交变正弦和旋转磁场垂直于B(0)时的影响。给出了在适当的磁性流体浓度范围(0.002至0.01固体体积分数)和纳米颗粒半径范围(1至10 nm)内,小肿瘤(半径约1 cm)预期温度升高的结果。结果表明,即使在磁性流体饱和度不显著的低场MRI系统中,通过仔细操作也会发生显著加热。这项工作的目标是通过分析和模拟,研究利用超顺磁性氧化铁纳米颗粒悬浮液在MRI环境中的动态行为进行交互式流体磁化的概念。除了与MRI相关的通常磁场外,还施加了一个垂直于MRI主B(0)场的旋转磁场。先前已提出额外或修改的磁场用于MRI内的热疗和靶向药物递送。研究了在B(0)存在的情况下横向旋转磁场的分析预测和数值模拟,以证明旋转场频率Ω和磁场幅度对流体悬浮液磁化的影响。由于旋转横向场引起的横向磁化强烈依赖于流体悬浮液的特征时间常数τ。分析表明,随着旋转场频率增加,使得Ωτ接近1,横向流体磁化矢量与外加旋转场显著不对齐,并且磁化强度是场频率的强函数。在这个频率范围内,流体的横向磁化由操作员确定的外加场控制。当纳米颗粒以热疗中更典型的高浓度(1至3%固体体积分数)而非临床成像应用中的浓度存在,并且在低MRI场强(如开放式MRI系统)中,纳米颗粒未达到磁饱和时,通过分析证明了由于悬浮液中磁性纳米颗粒的物理旋转而产生的现象。研究了在平面通道几何结构中施加泊肃叶流和改变纳米颗粒浓度的影响。这项工作是首次已知的尝试,用于分析MRI环境中磁性纳米颗粒的动态行为,包括磁性纳米颗粒自旋速度的影响。结果表明,横向磁化强度是旋转横向场频率的强函数。由于高纳米颗粒浓度下平面泊肃叶流中流体磁化不均匀,预测了交互式流体磁化效应。

相似文献

8
Measuring the transverse magnetization of rotating ferrofluids.测量旋转铁磁流体的横向磁化强度。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):036302. doi: 10.1103/PhysRevE.73.036302. Epub 2006 Mar 2.

本文引用的文献

8
A readout magnet for prepolarized MRI.用于预极化磁共振成像的读出磁体。
Magn Reson Med. 1996 Oct;36(4):527-36. doi: 10.1002/mrm.1910360405.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验