Xiang Qingwei, Yu Xingyu, Guo Kuixiang, Cheng Chufeng, Yue Xixiang, Wang Jingsong, Liu Yaochi
School of Civil Engineering, University of South China, Hengyang 421001, China.
School of Resources, Environment and Safety Engineering, University of South China, Hengyang 421001, China.
Materials (Basel). 2025 Apr 11;18(8):1752. doi: 10.3390/ma18081752.
Manganese monoxide (MnO), a versatile manganese oxide, is highly regarded for its potential to address heavy metal and radioactive contamination effectively. In this study, we investigated the adsorption mechanism of strontium nitrate solution on MnO crystal surfaces using molecular dynamics simulations. We examined the effects of adsorption and diffusion of ions and water molecules on three distinct MnO crystal surfaces. The results revealed significant differences in the adsorption capacities of Sr, NO, and HO on the MnO crystal surfaces. The radial distribution function (RDF), the non-bond interaction energy (E), and mean square displacement (MSD) data indicate that Sr exhibits the strongest interaction with the MnO (111) crystal surface. This results in a shift of Sr from outer-sphere adsorption to inner-sphere adsorption. This strong interaction is primarily due to the increase in the number and prominence of non-bridging oxygen atoms on the MnO crystal surfaces.
一氧化锰(MnO)是一种用途广泛的锰氧化物,因其有效解决重金属和放射性污染的潜力而备受关注。在本研究中,我们使用分子动力学模拟研究了硝酸锶溶液在MnO晶体表面的吸附机制。我们研究了离子和水分子在三种不同MnO晶体表面上的吸附和扩散效应。结果表明,Sr、NO和HO在MnO晶体表面的吸附能力存在显著差异。径向分布函数(RDF)、非键相互作用能(E)和均方位移(MSD)数据表明,Sr与MnO(111)晶体表面的相互作用最强。这导致Sr从外层吸附转变为内层吸附。这种强相互作用主要是由于MnO晶体表面非桥连氧原子数量的增加和突出。