Suppr超能文献

三维打印多孔钛合金的制备与后处理

Preparation and Post-Processing of Three-Dimensional Printed Porous Titanium Alloys.

作者信息

Li Tairong, Xu Mengyu, Yao Jinzhi, Deng Liping, Wang Bingshu

机构信息

College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.

Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.

出版信息

Materials (Basel). 2025 Apr 18;18(8):1864. doi: 10.3390/ma18081864.

Abstract

Ti6Al4V is widely utilized in orthopedic implants due to its excellent mechanical properties, corrosion resistance, and biocompatibility. However, traditional solid titanium implants exhibit an elastic modulus (90-115 GPa) significantly higher than that of human bone (10-30 GPa), leading to stress shielding and implant loosening. To address this, porous titanium alloys have been developed to better match bone elasticity. Additive manufacturing, particularly selective laser melting (SLM), enables precise control over pore size and porosity, thereby tuning mechanical properties. Nevertheless, SLM-produced porous structures often suffer from powder adhesion, which compromises bone integration and patient safety. In this study, bulk Ti6Al4V samples were fabricated via SLM with a fixed laser power of 200 W and varying scanning speeds (800-1400 mm/s). Density measurements and surface defect analysis identified 1200 mm/s as the optimal scanning speed. Cubic unit cell scaffolds with different pore diameters (400, 600, 800 μm) and porosities (60%, 80%) were subsequently designed. Compression tests revealed that scaffolds with a 400 μm pore diameter and 60% porosity exhibited the highest compressive strength (794 MPa) and fracture strain (41.35%). Chemical polishing using a diluted HF-HNO solution (1:2:97) effectively removed adhered powder without significant structural degradation, with 40 min identified as the optimal polishing duration.

摘要

Ti6Al4V因其优异的机械性能、耐腐蚀性和生物相容性而被广泛应用于骨科植入物。然而,传统的实心钛植入物的弹性模量(90 - 115 GPa)明显高于人体骨骼(10 - 30 GPa),导致应力屏蔽和植入物松动。为了解决这个问题,已开发出多孔钛合金以更好地匹配骨骼弹性。增材制造,特别是选择性激光熔化(SLM),能够精确控制孔径和孔隙率,从而调整机械性能。然而,SLM制造的多孔结构常常存在粉末附着问题,这会影响骨整合和患者安全。在本研究中,通过SLM以200 W的固定激光功率和不同的扫描速度(800 - 1400 mm/s)制造了块状Ti6Al4V样品。密度测量和表面缺陷分析确定1200 mm/s为最佳扫描速度。随后设计了具有不同孔径(400、600、800 μm)和孔隙率(60%、80%)的立方晶胞支架。压缩试验表明,孔径为400 μm、孔隙率为60%的支架表现出最高的抗压强度(794 MPa)和断裂应变(41.35%)。使用稀释的HF - HNO溶液(1:2:97)进行化学抛光有效地去除了附着的粉末,且结构无明显降解,确定40分钟为最佳抛光持续时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c38/12028840/9430379ac181/materials-18-01864-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验