The University of Queensland, School of Dentistry, Herston, QLD, Australia.
Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
Int J Oral Sci. 2023 Mar 29;15(1):15. doi: 10.1038/s41368-023-00220-9.
Nano-engineering-based tissue regeneration and local therapeutic delivery strategies show significant potential to reduce the health and economic burden associated with craniofacial defects, including traumas and tumours. Critical to the success of such nano-engineered non-resorbable craniofacial implants include load-bearing functioning and survival in complex local trauma conditions. Further, race to invade between multiple cells and pathogens is an important criterion that dictates the fate of the implant. In this pioneering review, we compare the therapeutic efficacy of nano-engineered titanium-based craniofacial implants towards maximised local therapy addressing bone formation/resorption, soft-tissue integration, bacterial infection and cancers/tumours. We present the various strategies to engineer titanium-based craniofacial implants in the macro-, micro- and nano-scales, using topographical, chemical, electrochemical, biological and therapeutic modifications. A particular focus is electrochemically anodised titanium implants with controlled nanotopographies that enable tailored and enhanced bioactivity and local therapeutic release. Next, we review the clinical translation challenges associated with such implants. This review will inform the readers of the latest developments and challenges related to therapeutic nano-engineered craniofacial implants.
基于纳米工程的组织再生和局部治疗药物输送策略在减少与颅面缺陷(包括创伤和肿瘤)相关的健康和经济负担方面显示出巨大的潜力。这种纳米工程不可吸收的颅面植入物的成功关键包括在复杂的局部创伤条件下具有承重功能和生存能力。此外,多个细胞和病原体之间的入侵竞赛是决定植入物命运的重要标准。在这篇开创性的综述中,我们比较了纳米工程钛基颅面植入物在最大化局部治疗方面的治疗效果,以解决骨形成/吸收、软组织整合、细菌感染和癌症/肿瘤问题。我们介绍了在宏观、微观和纳米尺度上设计钛基颅面植入物的各种策略,包括形貌、化学、电化学、生物和治疗修饰。特别关注的是具有受控纳米形貌的电化学阳极氧化钛植入物,它可以实现定制化和增强的生物活性和局部治疗药物释放。接下来,我们回顾了与这些植入物相关的临床转化挑战。这篇综述将为读者提供有关治疗性纳米工程颅面植入物的最新发展和挑战的信息。