Wu Chao, Zhang Haoyan, Zheng Xuan, Ding Jing, Li Yuanyuan, Chen Feiyong, Zhao Zhengfeng
Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China.
School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
Materials (Basel). 2025 Apr 19;18(8):1874. doi: 10.3390/ma18081874.
The urgency of reducing pollution and developing clean energy storage requires efficient photocatalytic hydrogen evolution (PHE) tactics. To improve solar conversion efficiency, it is highly imperative to accelerate the photocarriers separation and transport through materials design. A stable hydrogen evolution photocatalyst based on TpPa-COFs (triformylphloroglucinol phenylenediamine covalent organic frameworks) was developed by a molecular-level design strategy. The study successfully introduced a molecular-scale Ir active site onto the surface of TpPa-COFs via coordination bonds. It verified the structural integrity of TpPa-COFs and the existence of Ir through the basic structural characterizations, such as Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). After the Ir-based coordination compound joining, the absorption edge of TpPa-COF-M1 and TpPa-COF-M2 was extended to 750 nm. The TpPa-COF + M1 exhibited the highest photocatalytic H evolution rate of 662 µmol/h (10 mg catalyst) under visible-light (λ ≥ 420 nm) irradiation. The apparent quantum yield (AQY) of TpPa-COF-M1 is calculated to be 1.9%, 3.8%, 4.8%, 2.8%, 1.8%, and 0.3% at monochromatic wavelengths of 420, 450, 470, 500, 550, and 600 nm, respectively. Our findings confirm that the molecular-level design of photocatalysts can effectively boost performance and reduce cost in photocatalytic reactions and provide an important strategy for designing efficient photocatalysts.
减少污染和开发清洁能源存储的紧迫性需要高效的光催化析氢(PHE)策略。为了提高太阳能转换效率,通过材料设计加速光载流子的分离和传输至关重要。通过分子水平设计策略开发了一种基于TpPa-COFs(三醛基间苯三酚苯二胺共价有机框架)的稳定析氢光催化剂。该研究通过配位键成功地将分子尺度的Ir活性位点引入到TpPa-COFs表面。通过傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和透射电子显微镜(TEM)等基本结构表征,验证了TpPa-COFs的结构完整性和Ir的存在。Ir基配位化合物加入后,TpPa-COF-M1和TpPa-COF-M2的吸收边缘扩展到750nm。在可见光(λ≥420nm)照射下,TpPa-COF+M1表现出最高的光催化析氢速率,为662µmol/h(10mg催化剂)。TpPa-COF-M1在420、450、470、500、550和600nm单色波长下的表观量子产率(AQY)分别计算为1.9%、3.8%、4.8%、2.8%、1.8%和0.3%。我们的研究结果证实,光催化剂的分子水平设计可以有效地提高光催化反应的性能并降低成本,并为设计高效光催化剂提供了重要策略。