Sáez Alexis, Passelègue François, Lecampion Brice
Geo-Energy Lab - Gaznat Chair, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Géoazur, Université Côte d'Azur, Nice, France.
Sci Adv. 2025 May 9;11(19):eadq0662. doi: 10.1126/sciadv.adq0662. Epub 2025 May 7.
Fluid injections can induce aseismic slip, resulting in stress changes that may propagate faster than pore pressure diffusion, potentially triggering seismicity at substantial distances from injection wells. Constraining the maximum extent of these aseismic ruptures is, thus, important for better delineating the influence zone of injections concerning their seismic hazard. Here, we derive a scaling relation based on rupture physics for the maximum size of aseismic ruptures, accounting for fluid injections with arbitrary flow rate histories. Moreover, on the basis of mounting evidence that the moment release during these operations is often predominantly aseismic, we derive a scaling relation for the maximum magnitude of aseismic slip events. Our theoretical predictions are consistent with observations over a broad spectrum of event sizes, from laboratory to real-world cases, indicating that fault zone storativity, background stress change, and injected fluid volume are key determinants of the maximum size and magnitude of injection-induced slow slip events.
流体注入可诱发无震滑动,导致应力变化,其传播速度可能比孔隙压力扩散更快,有可能在距注入井相当远的距离处触发地震活动。因此,限制这些无震破裂的最大范围,对于更好地划定注入对地震危害的影响区域很重要。在此,我们基于破裂物理学推导了一个关于无震破裂最大尺寸的标度关系,该关系考虑了具有任意流量历史的流体注入情况。此外,基于越来越多的证据表明这些作业期间的矩释放通常主要是无震的,我们推导了一个关于无震滑动事件最大震级的标度关系。我们的理论预测与从实验室到实际案例的广泛事件规模的观测结果一致,表明断层带储存率、背景应力变化和注入流体体积是注入诱发慢滑事件最大尺寸和震级的关键决定因素。