Zhao Yueqi, Tian Feifei, Sun Zhaoru
School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China.
Sci Adv. 2025 May 9;11(19):eadu6525. doi: 10.1126/sciadv.adu6525. Epub 2025 May 7.
Carbonic acid (HCO), rather than water, serves as the primary protonating buffer regulating pH in biological systems and oceans. Its dissociation dynamics, driven by three conformers-cis-cis (CC), cis-trans (CT), and trans-trans (TT)-pose substantial experimental and theoretical challenges. Using deep potential molecular dynamics simulations with ab initio accuracy, we explored the dissociation dynamics of HCO in solution on the nanosecond timescale. While the CC conformer is the most abundant, the CT conformer is the dominant proton donor. This enhanced deprotonation ability arises from the CT conformer's involvement in more hydrogen-bonding ring structures, enabling diverse proton transfer pathways, and its greater electronic asymmetry, which increases hydrophilicity and destabilizes the hydroxyl group. Furthermore, protons dissociated from the CT conformer demonstrate a stronger preference for the homing pathway. Our findings underscore the critical role of the topology and electronic properties of the CT conformer in aqueous HCO dissociation and proton transfer.
在生物系统和海洋中,调节pH值的主要质子化缓冲剂是碳酸(HCO),而非水。由顺-顺(CC)、顺-反(CT)和反-反(TT)三种构象驱动的碳酸离解动力学,带来了诸多实验和理论挑战。我们利用具有从头算精度的深度势能分子动力学模拟,在纳秒时间尺度上探索了溶液中HCO的离解动力学。虽然CC构象最为常见,但CT构象却是主要的质子供体。这种增强的去质子化能力源于CT构象参与了更多的氢键环结构,从而实现了多样的质子转移途径,以及其更大的电子不对称性,这增加了亲水性并使羟基不稳定。此外,从CT构象解离出的质子对归巢途径表现出更强的偏好。我们的研究结果强调了CT构象的拓扑结构和电子性质在水溶液中HCO离解和质子转移中的关键作用。