Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) D-06120, Germany.
Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden.
J Am Chem Soc. 2024 Aug 14;146(32):22284-22294. doi: 10.1021/jacs.4c04647. Epub 2024 Aug 5.
Histidine is a key amino-acid residue in proteins with unique properties engendered by its imidazole side chain that can exist in three different states: two different neutral tautomeric forms and a protonated, positively charged one with a p value close to physiological pH. Commonly, two or all three states coexist and interchange rapidly, enabling histidine to act as both donor and acceptor of hydrogen bonds, coordinate metal ions, and engage in acid/base catalysis. Understanding the exchange dynamics among the three states is critical for assessing histidine's mechanistic role in catalysis, where the rate of proton exchange and interconversion among tautomers might be rate limiting for turnover. Here, we determine the exchange kinetics of histidine residues with p values representative of the accessible range from 5 to 9 by measuring pH-dependent N, C, and H transverse relaxation rate constants for 5 nuclei in each imidazole. Proton exchange between the imidazole and the solvent is mediated by hydronium ions at acidic and neutral pH, whereas hydroxide mediated exchange becomes the dominant mechanism at basic pH. Proton transfer is very fast and reaches the diffusion limit for p values near neutral pH. We identify a direct pathway between the two tautomeric forms, likely mediated by a bridging water molecule or, in the case of high pH, hydroxide ion. For histidines with p 7, we determine all rate constants (lifetimes) involving protonation over the entire pH range. Our approach should enable critical insights into enzymatic acid/base catalyzed reactions involving histidines in proteins.
组氨酸是蛋白质中一种关键的氨基酸残基,其咪唑侧链具有独特的性质,可以存在于三种不同的状态:两种不同的中性互变异构形式和一种质子化的、带正电荷的形式,其 p 值接近生理 pH 值。通常,两种或三种状态共存并快速交换,使组氨酸既能作为氢键的供体,又能作为氢键的受体,能配位金属离子,并参与酸碱催化。了解三种状态之间的交换动力学对于评估组氨酸在催化中的机制作用至关重要,其中质子交换速率和互变异构体之间的转换速率可能是周转率的限速步骤。在这里,我们通过测量每个咪唑中的 5 个核的 pH 依赖性 N、C 和 H 横向弛豫率常数,确定了 p 值代表可及范围从 5 到 9 的组氨酸残基的交换动力学。在酸性和中性 pH 值下,质子在咪唑和溶剂之间通过氢离子进行交换,而在碱性 pH 值下,氢氧根介导的交换成为主要机制。质子转移非常快,在接近中性 pH 值时达到扩散限制。我们确定了两种互变异构体之间的直接途径,可能由桥接水分子介导,或者在高 pH 值的情况下,由氢氧根离子介导。对于 p 值为 7 的组氨酸,我们确定了整个 pH 范围内涉及质子化的所有速率常数(寿命)。我们的方法应该能够为涉及蛋白质中组氨酸的酶促酸碱催化反应提供关键的见解。