Byron Carly, Kim Yu Lim, Bryant Jacob T, Hall Jacklyn N, Zhou Tao, Wen Jianguo, Liu Cong, Delferro Massimiliano, Ferrandon Magali S
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.
ACS Appl Mater Interfaces. 2025 May 21;17(20):29695-29707. doi: 10.1021/acsami.5c03982. Epub 2025 May 7.
Synthesis of twenty-seven bimetallic catalysts consisting of nickel and one of nine different dopants (B, Co, Cu, Fe, Mg, Mn, Sn, V, and Zn) supported on three different metal oxides (AlO, CeO, and SiO) is carried out via organometallic grafting. The catalysts are evaluated for their activity and selectivity for the CO methanation reaction at a feed ratio of H/CO of 4 at 300 °C in a high-throughput flow reactor system. After pre-activation (500 °C in H), Ni/Co/CeO exhibited high conversion (84.3%) and selectivity for methane (99.6%). Ni/Co/CeO was characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, H-temperature-programmed reduction (H-TPR), and CO-temperature-programmed desorption (CO-TPD). HRTEM showed the presence of single Ni and Co atoms on ceria after pre-reduction at 500 °C and after the methanation reaction at 300 °C for 15 h. XPS determined that the strong interaction between Ni, Co, and ceria increased after the reduction, leading to a charge transfer between Ni and Ce that created oxygen vacancies in ceria. Nickel was found to be Ni in the as-prepared material and was partially reduced in the presence of cobalt and after the activation in H at 500 °C. The DFT results show that both nickel and cerium exhibit lower Bader charges in the Ni/Co/CeO system, confirming that the presence of cobalt enhances the reduction of both Ni and Ce through electronic interactions. This indicates that single cationic Ni atoms are highly effective for the methanation reaction. The organometallic grafting technique is found to be efficient for synthesizing catalysts with highly homogeneous dispersed species at low metal loadings (0.16 wt % Ni-0.15 wt % Co), which leads to high turnover frequency (up to 248.7 h) and durability for methanation.
通过有机金属接枝法合成了由镍与九种不同掺杂剂(硼、钴、铜、铁、镁、锰、锡、钒和锌)中的一种组成的27种双金属催化剂,这些催化剂负载在三种不同的金属氧化物(氧化铝、氧化铈和氧化硅)上。在高通量流动反应器系统中,于300℃下,在氢气与一氧化碳进料比为4的条件下,对这些催化剂的一氧化碳甲烷化反应活性和选择性进行了评估。经过预活化(在氢气中500℃)后,镍/钴/氧化铈表现出高转化率(84.3%)和对甲烷的高选择性(99.6%)。通过高分辨率透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、X射线衍射、氢气程序升温还原(H-TPR)和一氧化碳程序升温脱附(CO-TPD)对镍/钴/氧化铈进行了表征。HRTEM显示,在500℃预还原后以及在300℃进行15小时甲烷化反应后,氧化铈上存在单个镍和钴原子。XPS测定,还原后镍、钴与氧化铈之间的强相互作用增强,导致镍与铈之间发生电荷转移,在氧化铈中产生氧空位。发现制备态材料中的镍为镍离子态,在钴存在下以及在500℃氢气中活化后部分被还原。密度泛函理论(DFT)结果表明,在镍/钴/氧化铈体系中镍和铈的巴德电荷均较低,证实钴的存在通过电子相互作用增强了镍和铈的还原。这表明单个阳离子镍原子对甲烷化反应非常有效。发现有机金属接枝技术在低金属负载量(0.16 wt%镍 - 0.15 wt%钴)下合成具有高度均匀分散物种的催化剂方面是有效的,这导致了高周转频率(高达248.7 h⁻¹)和甲烷化耐久性。