Suppr超能文献

通过在线评论的文本挖掘探究网购顾客满意度的内在机制与演化特征

Probing the intrinsic mechanism and evolution characteristics of online shopping customer satisfaction via text mining of online reviews.

作者信息

Wang Mingyue, Kong Rui, Wang Yibo

机构信息

School of Economics and Management, China University of Geosciences, Beijing, China.

Key Laboratory on Resources and Environment Capacity under Ministry of Land and Resources of People's Republic of China, Beijing, China.

出版信息

PLoS One. 2025 May 7;20(5):e0321202. doi: 10.1371/journal.pone.0321202. eCollection 2025.

Abstract

Prior research has tended to disregard the dynamic nature of customer satisfaction in online shopping and how it influences corporate marketing decisions. This study originally introduces a dynamic online shopping customer satisfaction index model and devises a new text mining algorithm to quantify online reviews, testing and analyzing the model to reveal the intrinsic mechanism and evolutionary characteristics of online shopping customer satisfaction. Findings reveal disparities between the online shopping customer satisfaction index model and the American customer satisfaction index model. Specifically, customer expectations significantly impact customer loyalty, while customer loyalty influences complaint rates. The study also highlights the impact of COVID-19, which has intensified competition and underscored the importance of perceived quality and brand image. Our findings provides a reference for e-commerce enterprises to realize data-driven marketing decisions.

摘要

先前的研究往往忽视了网络购物中顾客满意度的动态本质及其对企业营销决策的影响。本研究首次引入了动态网络购物顾客满意度指数模型,并设计了一种新的文本挖掘算法来量化在线评论,对该模型进行测试和分析,以揭示网络购物顾客满意度的内在机制和演化特征。研究结果揭示了网络购物顾客满意度指数模型与美国顾客满意度指数模型之间的差异。具体而言,顾客期望对顾客忠诚度有显著影响,而顾客忠诚度则影响投诉率。该研究还强调了新冠疫情的影响,它加剧了竞争,并凸显了感知质量和品牌形象的重要性。我们的研究结果为电子商务企业实现数据驱动的营销决策提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f2/12058191/2f8fa88c348f/pone.0321202.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验