Hu Yuqing, Zhang Nuanqin, Zhang Xiang, Zu Junning, Ma Sicong, Yu Linghao, Guo Chang, Liao Xiaomei, Wang Shaohui, Li Hao, Sun Hongwei, Zhang Lizhi
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China.
Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
Water Res. 2025 Sep 1;283:123771. doi: 10.1016/j.watres.2025.123771. Epub 2025 May 2.
The microbe-surface interaction plays essential roles in various natural and anthropogenic water processes, and it is of great benefit to tailor their interfacial contact. For instance, zero-valent iron (ZVI) holds great promise as an emerging disinfection agent, but its efficiency remains limited due to the insufficient ZVI-bacteria contact. Herein we modified the surface of ZVI with potassium dihydrogen phosphate (KHPO) by ball milling (P-ZVI) to facilitate the close adhesion and inactivation of Escherichia coli (E. coli). ExDLVO simulation indicated the significantly alleviated Lewis acid-base repulsion between P-ZVI and E. coli due to the enhanced hydrogen bonding. ATR-FTIR spectra and DFT calculation suggested that the surface phosphate moiety could form dual hydrogen bonds with the amide domain of bacterial proteins (e.g., membrane proteins, pili, flagella, etc.), significantly shortening the length of hydrogen bonds from 1.784 to 1.781 and 1.646 Å. The enhanced adhesion of E. coli on P-ZVI lead to more pronounced oxidative stress and inactivation of the cells. Impressively, P-ZVI exhibited superior bactericidal efficiency of 99.2% in batch experiments, far surpassing that of ZVI (33.9%, p < 0.001). As a prototype of application, the sand column packed with P-ZVI continuously removed E. coli to below 100 CFU/mL from simulated groundwater. This study provided an effective and facile strategy of phosphorylation to modulate the ZVI-bacterium adhesion for contact sterilization, and may shed light on the development of novel disinfection techniques, and the design of biofilm carriers for wastewater treatment, etc.
微生物与表面的相互作用在各种自然和人为的水过程中起着至关重要的作用,调整它们的界面接触具有很大的益处。例如,零价铁(ZVI)作为一种新兴的消毒剂具有很大的潜力,但由于ZVI与细菌的接触不足,其效率仍然有限。在此,我们通过球磨用磷酸二氢钾(KHPO)对ZVI的表面进行改性(P-ZVI),以促进大肠杆菌(E. coli)的紧密粘附和失活。扩展DLVO模拟表明,由于氢键增强,P-ZVI与大肠杆菌之间的路易斯酸碱排斥力显著减轻。ATR-FTIR光谱和DFT计算表明,表面磷酸部分可以与细菌蛋白质的酰胺结构域(如膜蛋白、菌毛、鞭毛等)形成双氢键,显著缩短氢键长度,从1.784 Å缩短到1.781 Å和1.646 Å。大肠杆菌在P-ZVI上增强的粘附导致细胞更明显的氧化应激和失活。令人印象深刻的是,P-ZVI在分批实验中表现出99.2%的优异杀菌效率,远远超过ZVI(33.9%,p < 0.001)。作为应用的一个原型,填充P-ZVI的砂柱将模拟地下水中的大肠杆菌持续去除至100 CFU/mL以下。本研究提供了一种有效且简便的磷酸化策略,以调节ZVI与细菌的粘附用于接触杀菌,并可能为新型消毒技术的开发以及废水处理生物膜载体的设计等提供启示。