Suppr超能文献

基于循环肿瘤细胞衍生mRNA定量和机器学习的数字评分用于早期结直肠癌检测

A Digital Score Based on Circulating-Tumor-Cells-Derived mRNA Quantification and Machine Learning for Early Colorectal Cancer Detection.

作者信息

Li Cheng, Wang Zhili, Ding Pi, Zhou Zeyang, Chen Ruidong, Hu Yunyun, Zhao Kui, Peng Wei, Yang Xiaodong, Sun Na, Pei Renjun

机构信息

CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.

School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.

出版信息

ACS Nano. 2025 May 20;19(19):18117-18128. doi: 10.1021/acsnano.4c15056. Epub 2025 May 7.

Abstract

Circulating tumor cells (CTCs) serve as valuable biomarkers in tumor circulation, carrying essential primary tumor information. The purification of CTCs from peripheral blood samples and the analysis of their characteristic molecules enable the detection of tumors at an early stage. The noninvasive, continuous, real-time dynamic monitoring provides a promising solution for the timely diagnosis of colorectal cancer (CRC). In this study, we developed a minimally invasive method for CRC early detection to enable accurate screening in a friendly manner for individuals who generally require colonoscopy. The dual-antibody (i.e., anti-EpCAM and anti-EGFR) modified antifouling hydrogel-coated magnetic nanoparticles (pSBMA-MNPs) were prepared for efficient and specific CTC purification. Then, the quantification of 6 RNA transcripts in purified CRC CTCs was performed via droplet digital PCR (ddPCR), and a CRC score was calculated using an extreme gradient boosting model to distinguish CRC from colon polyps and adenomas. A pilot study was conducted to evaluate the clinical potential of the CRC CTC RNA assay in a training cohort ( = 101) and an independent test cohort ( = 65), achieving a diagnostic accuracy of 91.0% in the whole cohort, significantly outperforming serum CEA, CA125, and CA199. Subgroup analysis across CRC stage, age, and tumor location of patients was also performed, and the CRC score exhibited robust performance, demonstrating commendable diagnostic efficacy for CRC detection and promising application in friendly screening individuals that really require colonoscopy.

摘要

循环肿瘤细胞(CTCs)作为肿瘤循环中的重要生物标志物,携带原发性肿瘤的关键信息。从外周血样本中纯化CTCs并分析其特征分子,有助于早期肿瘤检测。这种非侵入性、连续、实时的动态监测为结直肠癌(CRC)的及时诊断提供了一个有前景的解决方案。在本研究中,我们开发了一种用于CRC早期检测的微创方法,以便以友好的方式对通常需要进行结肠镜检查的个体进行准确筛查。制备了双抗体(即抗EpCAM和抗EGFR)修饰的防污水凝胶包被磁性纳米颗粒(pSBMA-MNPs),用于高效、特异性地纯化CTCs。然后,通过液滴数字PCR(ddPCR)对纯化的CRC CTCs中的6种RNA转录本进行定量,并使用极端梯度提升模型计算CRC评分,以区分CRC与结肠息肉和腺瘤。在一个训练队列(n = 101)和一个独立测试队列(n = 65)中进行了一项初步研究,以评估CRC CTC RNA检测的临床潜力,在整个队列中实现了91.0%的诊断准确率,显著优于血清CEA、CA125和CA199。还对患者的CRC分期、年龄和肿瘤位置进行了亚组分析,CRC评分表现出稳健的性能,对CRC检测具有值得称赞的诊断效力,并有望应用于真正需要结肠镜检查的个体的友好筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验