工程化氧化铁纳米平台:重新编程免疫抑制微环境以实现精准癌症诊疗
Engineered iron oxide nanoplatforms: reprogramming immunosuppressive niches for precision cancer theranostics.
作者信息
Yang Chao, Li Shenglong, Wang Liming
机构信息
Trauma Center and Department of Burns, The First Hospital of China Medical University, Shenyang, China.
Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China.
出版信息
Mol Cancer. 2025 Sep 1;24(1):225. doi: 10.1186/s12943-025-02443-2.
Iron oxide nanoparticles (IONPs) have transitioned from conventional magnetic resonance imaging (MRI) contrast agents into structurally programmable combined imaging/treatment tools, leveraging their superparamagnetism, catalytic activity, and surface engineering versatility to achieve spatiotemporal control over drug delivery and immune modulation. Advances in nanofabrication now yield size-optimized aggregates with enhanced tumor accumulation through the enhanced permeability and retention (EPR) effect, while clinically approved formulations like ferumoxytol demonstrate intrinsic immunomodulatory functionality, positioning IONPs as pivotal tools for precision oncology. Conversely, cancer immunotherapy remains limited by the immunosuppressive tumor microenvironment (TME), where cellular suppression via M2-polarized macrophages and regulatory T cells (Tregs) synergizes with physical exclusion from dense extracellular matrices and metabolic sabotage through lactate-driven acidosis. These barriers establish "immune-cold" phenotypes characterized by deficient CD8⁺ T-cell infiltration and tertiary lymphoid structure formation, driving checkpoint inhibitor resistance with sub-30% response rates in solid tumors. To overcome these constraints, IONPs orchestrate multimodal immunotherapeutic strategies: they reprogram suppressive niches by polarizing macrophages toward M1 phenotypes, activate STING pathways, and induce immunogenic ferroptosis; enable precision delivery via magnetic lymph node targeting and cancer cell membrane-mediated homologous tumor homing; and facilitate real-time theranostics through MRI/magnetic particle imaging (MPI)-monitored immune cell trafficking. Preclinical validation confirms synergistic efficacy, with combinatorial regimens achieving over 50% complete tumor regression by converting immunologically cold microenvironments into inflamed states. This review systematically explores cutting-edge IONP-based innovations-spanning immune cell engineering, biohybrid systems, and energy-amplified therapies-that bridge localized tumor eradication with systemic antitumor immunity, while critically evaluating translational barriers for clinical implementation.
氧化铁纳米颗粒(IONPs)已从传统的磁共振成像(MRI)造影剂转变为结构可编程的联合成像/治疗工具,利用其超顺磁性、催化活性和表面工程多功能性来实现对药物递送和免疫调节的时空控制。纳米制造技术的进步现在能够生产出尺寸优化的聚集体,通过增强的渗透和滞留(EPR)效应提高肿瘤蓄积,而像 ferumoxytol 这样临床批准的制剂具有内在的免疫调节功能,使 IONPs 成为精准肿瘤学的关键工具。相反,癌症免疫疗法仍然受到免疫抑制性肿瘤微环境(TME)的限制,在这种环境中,M2 极化巨噬细胞和调节性 T 细胞(Tregs)介导的细胞抑制与致密细胞外基质的物理排斥以及乳酸驱动的酸中毒导致的代谢破坏协同作用。这些障碍形成了以 CD8⁺ T 细胞浸润不足和三级淋巴结构形成为特征的“免疫冷”表型,导致实体瘤中检查点抑制剂的反应率低于 30%。为了克服这些限制,IONPs 精心设计了多模态免疫治疗策略:它们通过将巨噬细胞极化为 M1 表型来重新编程抑制性微环境,激活 STING 通路,并诱导免疫原性铁死亡;通过磁性淋巴结靶向和癌细胞膜介导的同源肿瘤归巢实现精准递送;并通过 MRI/磁粒子成像(MPI)监测免疫细胞运输来促进实时治疗诊断。临床前验证证实了协同疗效,联合方案通过将免疫冷微环境转变为炎症状态实现了超过 50%的完全肿瘤消退。本综述系统地探讨了基于 IONP 的前沿创新——包括免疫细胞工程、生物杂交系统和能量放大疗法——这些创新将局部肿瘤根除与全身抗肿瘤免疫联系起来,同时严格评估临床实施的转化障碍。